A364061 Numbers whose exponent of 2 in their canonical prime factorization is smaller than all the other exponents.
2, 4, 8, 16, 18, 32, 50, 54, 64, 98, 108, 128, 162, 242, 250, 256, 324, 338, 450, 486, 500, 512, 578, 648, 686, 722, 882, 972, 1024, 1058, 1250, 1350, 1372, 1458, 1682, 1922, 1944, 2048, 2178, 2250, 2450, 2500, 2646, 2662, 2738, 2916, 3042, 3362, 3698, 3888
Offset: 1
Keywords
Examples
The terms together with their prime factors begin: 2 = 2 4 = 2*2 8 = 2*2*2 16 = 2*2*2*2 18 = 2*3*3 32 = 2*2*2*2*2 50 = 2*5*5 54 = 2*3*3*3 64 = 2*2*2*2*2*2 98 = 2*7*7 108 = 2*2*3*3*3 128 = 2*2*2*2*2*2*2
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Partitions of this type are counted by A364062.
Programs
-
Maple
filter:= proc(n) local F,F2,Fo; F:= ifactors(n)[2]; F2,Fo:= selectremove(t -> t[1]=2, F); Fo = [] or F2[1,2] < min(Fo[..,2]) end proc: select(filter, 2*[$1..5000]); # Robert Israel, Apr 22 2024
-
Mathematica
prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]]; comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&]; Select[Range[100],comodes[prifacs[#]]=={2}&]
-
Python
from sympy import factorint from itertools import count, islice def A364061_gen(startvalue=2): # generator of terms >= startvalue return filter(lambda n:(l:=(~n&n-1).bit_length()) < min(factorint(m:=n>>l).values(),default=0) or m==1, count(max(startvalue+startvalue&1,2),2)) A364061_list = list(islice(A364061_gen(),30)) # Chai Wah Wu, Jul 14 2023
Formula
Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=2} (1-1/2^(k-1))*(s(k)-s(k+1)) = 1.16896822653093929144..., where s(k) = Product_{primes p >= 3} (1 + 1/(p^(k-1)*(p-1))) is the sum of reciprocals of the odd k-full numbers (numbers whose prime factorization has no exponent that is smaller than k). - Amiram Eldar, Aug 30 2024
Comments