This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364062 #6 Jul 13 2023 16:28:56 %S A364062 0,1,1,1,1,2,1,3,2,3,3,6,2,8,6,9,6,16,7,21,12,23,18,39,17,47,32,59,40, %T A364062 86,44,110,72,131,95,188,103,233,166,288,201,389,244,490,347,587,440, %U A364062 794,524,974,727,1187,903,1547,1106,1908,1459,2303,1826,2979,2198 %N A364062 Number of integer partitions of n with unique co-mode 1. %C A364062 These are partitions with at least one 1 but with fewer 1's than each of the other parts. %C A364062 We define a co-mode in a multiset to be an element that appears at most as many times as each of the other elements. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}. %e A364062 The a(n) partitions for n = 5, 7, 11, 13, 15: %e A364062 (221) (331) (551) (661) (771) %e A364062 (11111) (2221) (33221) (4441) (44331) %e A364062 (1111111) (33311) (33331) (55221) %e A364062 (222221) (44221) (442221) %e A364062 (2222111) (332221) (3322221) %e A364062 (11111111111) (2222221) (3333111) %e A364062 (22222111) (22222221) %e A364062 (1111111111111) (222222111) %e A364062 (111111111111111) %t A364062 comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&]; %t A364062 Table[Length[Select[IntegerPartitions[n],comodes[#]=={1}&]],{n,0,30}] %Y A364062 For high (or unique) mode we have A241131, ranks A360013. %Y A364062 For low mode we have A241131, ranks A360015. %Y A364062 Allowing any unique co-mode gives A362610, ranks A359178. %Y A364062 These partitions have ranks A364061. %Y A364062 Adding all 1-free partitions gives A364159, ranks A364158. %Y A364062 A000041 counts integer partitions, strict A000009. %Y A364062 A008284 counts partitions by length (or decreasing mean), strict A008289. %Y A364062 A237984 counts partitions containing their mean, ranks A327473. %Y A364062 A327472 counts partitions not containing their mean, ranks A327476. %Y A364062 A362608 counts partitions w/ unique mode, ranks A356862, complement A362605. %Y A364062 A362611 counts modes in prime indices, triangle A362614. %Y A364062 A362613 counts co-modes in prime indices, triangle A362615. %Y A364062 A363486 gives least mode in prime indices, A363487 greatest. %Y A364062 Cf. A002865, A027336, A325347, A098859, A360014, A362562, A362606, A363720, A363723, A363725, A363726. %K A364062 nonn %O A364062 0,6 %A A364062 _Gus Wiseman_, Jul 12 2023