This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364073 #6 Jul 06 2023 21:14:07 %S A364073 1,1,1,1,626,1,1,391251,1875,1,1,244531876,2733126,3748,1,1, %T A364073 152832422501,3658206250,9753130,6245,1,1,95520264063126, %U A364073 4721932028751,21925818740,25346895,9366,1,1,59700165039453751,5993213367973125,45788990528771,85217015555,54578181,13111,1 %N A364073 Triangle read by rows: T(n, k) = Sum_{d=0..n-k} binomial(n, d)*StirlingS2(n-d, k)*624^(n-d-k), with 0 <= k <= n. %C A364073 T(n, k) is the number of 625-subgroups of R^n which have dimension k, where R^n is a near-vector space over a proper nearfield R. %H A364073 Prudence Djagba and Jan Hązła, <a href="https://arxiv.org/abs/2306.16421">Combinatorics of subgroups of Beidleman near-vector spaces</a>, arXiv:2306.16421 [math.RA], 2023. See pp. 7-9. %e A364073 The triangle begins: %e A364073 1; %e A364073 1, 1; %e A364073 1, 626, 1; %e A364073 1, 391251, 1875, 1; %e A364073 1, 244531876, 2733126, 3748, 1; %e A364073 1, 152832422501, 3658206250, 9753130, 6245, 1; %e A364073 ... %t A364073 T[n_,k_]:=Sum[Binomial[n,d]StirlingS2[n-d,k]624^(n-d-k),{d,0,n-k}]; Table[T[n,k],{n,0,7},{k,0,n}]//Flatten %Y A364073 Cf. A000012 (k=0), A364070 (row sums), A364071, A364072. %K A364073 nonn,tabl %O A364073 0,5 %A A364073 _Stefano Spezia_, Jul 04 2023