cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364082 Expansion of Sum_{k>0} k * x^(3*k-2) / (1 - x^(4*k-3)).

This page as a plain text file.
%I A364082 #12 Jul 05 2023 01:44:51
%S A364082 1,1,1,3,1,1,4,1,3,5,1,1,6,3,1,10,1,1,10,1,1,9,5,3,13,1,1,11,3,6,12,1,
%T A364082 1,18,1,5,20,1,3,15,1,1,19,10,1,17,6,1,24,1,9,22,1,3,20,1,1,36,3,1,25,
%U A364082 5,1,30,11,1,24,1,10,28,1,12,26,3,5,27,1,1,51,9,6,29,1,3,30,14,1,38,3,1,41,1,15,42,1,1
%N A364082 Expansion of Sum_{k>0} k * x^(3*k-2) / (1 - x^(4*k-3)).
%F A364082 a(n) = (1/4) * Sum_{d | 4*n-1, d==1 (mod 4)} (d+3).
%F A364082 G.f.: Sum_{k>0} x^k / (1 - x^(4*k-1))^2.
%t A364082 a[n_] := DivisorSum[4*n - 1, # + 3 &, Mod[#, 4] == 1 &]/4; Array[a, 100] (* _Amiram Eldar_, Jul 05 2023 *)
%o A364082 (PARI) a(n) = sumdiv(4*n-1, d, (d%4==1)*(d+3))/4;
%Y A364082 Cf. A078703.
%K A364082 nonn
%O A364082 1,4
%A A364082 _Seiichi Manyama_, Jul 04 2023