This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364090 #37 Aug 06 2023 14:07:21 %S A364090 1,1,2,3,5,7,10,13,16,21,26,31,36,41,48,55,62,69,76,83,90,100,110,120, %T A364090 130,140,150,160,170,180,190,203,216,229,242,255,268,281,294,307,320, %U A364090 333,346,359,375,391,407,423,439,455,471,487,503,519,535,551,567 %N A364090 Add each term m of the sequence to the last one m times starting with 1, 1. %C A364090 a(n) seems to grow as n^c where c is a constant with the value of approximately 1.625, in other words, lim_{n->oo} log_n(a(n)) seems to converge. %e A364090 k denotes the k-th iteration %e A364090 The sequence is initialized with (1, 1) %e A364090 For k = 1 %e A364090 Add a(1) = 1 once, you get (1, 1, 2) %e A364090 For k = 2 %e A364090 Add a(2) = 1 once, you get (1, 1, 2, 3) %e A364090 For k = 3 %e A364090 Add a(3) = 2 twice, you get (1, 1, 2, 3, 5, 7) %e A364090 For k = 4 %e A364090 add a(4) = 3 three times, and you get (1, 1, 2, 3, 5, 7, 10, 13, 16) %o A364090 (Python) %o A364090 def a_list(n): %o A364090 if n <= 2: %o A364090 return 1 %o A364090 sequence = [1, 1] %o A364090 target_number_index = 0 %o A364090 times_to_add = sequence[target_number_index] %o A364090 for _ in range(n - 2): %o A364090 if times_to_add == 0: %o A364090 target_number_index += 1 %o A364090 times_to_add = sequence[target_number_index] %o A364090 last_term = sequence[-1] %o A364090 sequence.append(last_term + sequence[target_number_index]) %o A364090 times_to_add -= 1 %o A364090 return sequence %Y A364090 Cf. A100143. %K A364090 easy,nonn %O A364090 1,3 %A A364090 _Wagner Martins_, Jul 09 2023