cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364092 Sum of divisors of 5*n-1 of form 5*k+1.

This page as a plain text file.
%I A364092 #17 Jul 17 2023 00:59:09
%S A364092 1,1,1,1,7,1,1,1,12,1,7,1,17,1,1,1,28,1,1,12,27,1,7,1,32,1,1,1,59,1,
%T A364092 12,1,42,1,7,1,47,22,1,1,58,12,1,1,73,1,33,1,62,1,1,1,84,1,1,32,72,1,
%U A364092 28,1,93,1,1,12,124,1,1,1,87,1,7,1,118,42,12,1,119,1,1,22,102,1,53,1,107,12,32,1
%N A364092 Sum of divisors of 5*n-1 of form 5*k+1.
%F A364092 a(n) = A284097(5*n-1).
%F A364092 G.f.: Sum_{k>0} (5*k-4) * x^(4*k-3) / (1 - x^(5*k-4)).
%t A364092 a[n_] := DivisorSum[5*n - 1, # &, Mod[#, 5] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Jul 17 2023 *)
%o A364092 (PARI) a(n) = sumdiv(5*n-1, d, (d%5==1)*d);
%Y A364092 Cf. A364093, A364094, A364095.
%Y A364092 Cf. A008438, A363514.
%Y A364092 Cf. A284097, A359233, A364096.
%K A364092 nonn
%O A364092 1,5
%A A364092 _Seiichi Manyama_, Jul 04 2023