cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364095 Sum of divisors of 5*n-4 of form 5*k+1.

This page as a plain text file.
%I A364095 #15 Jul 12 2023 01:01:49
%S A364095 1,7,12,17,22,27,32,43,42,47,52,57,62,84,72,77,82,87,92,119,102,107,
%T A364095 112,117,133,154,132,137,142,147,152,189,162,167,172,204,182,224,192,
%U A364095 197,202,207,212,259,222,227,264,237,242,294,252,273,262,267,272,329,282,324,292,297,302,364,312
%N A364095 Sum of divisors of 5*n-4 of form 5*k+1.
%F A364095 a(n) = A284097(5*n-4).
%F A364095 G.f.: Sum_{k>0} (5*k-4) * x^k / (1 - x^(5*k-4)).
%t A364095 a[n_] := DivisorSum[5*n - 4, # &, Mod[#, 5] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Jul 12 2023 *)
%o A364095 (PARI) a(n) = sumdiv(5*n-4, d, (d%5==1)*d);
%Y A364095 Cf. A364092, A364093, A364094.
%Y A364095 Cf. A284097, A359238, A364099.
%K A364095 nonn
%O A364095 1,2
%A A364095 _Seiichi Manyama_, Jul 04 2023