cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364105 Expansion of Sum_{k>0} k * x^(2*k) / (1 - x^(5*k-1)).

This page as a plain text file.
%I A364105 #13 Jul 12 2023 01:01:15
%S A364105 0,1,0,2,0,4,0,4,0,6,0,6,2,8,0,8,0,10,0,13,0,14,0,12,0,14,4,14,0,16,2,
%T A364105 16,0,26,0,18,0,20,0,22,6,22,0,22,0,28,0,34,2,26,0,26,0,28,8,28,0,37,
%U A364105 0,30,0,44,0,32,4,34,2,34,10,42,0,36,0,38,0,54,0,40,0,40,0,54,12,46,2,44,0,44,0
%N A364105 Expansion of Sum_{k>0} k * x^(2*k) / (1 - x^(5*k-1)).
%F A364105 a(n) = (1/5) * Sum_{d | 5*n-2, d==4 (mod 5)} (d+1).
%F A364105 G.f.: Sum_{k>0} x^(4*k-2) / (1 - x^(5*k-3))^2.
%t A364105 a[n_] := DivisorSum[5*n - 2, # + 1 &, Mod[#, 5] == 4 &]/5; Array[a, 100] (* _Amiram Eldar_, Jul 12 2023 *)
%o A364105 (PARI) a(n) = sumdiv(5*n-2, d, (d%5==4)*(d+1))/5;
%Y A364105 Cf. A364104, A364106, A364107.
%Y A364105 Cf. A359269, A364101.
%K A364105 nonn
%O A364105 1,4
%A A364105 _Seiichi Manyama_, Jul 05 2023