This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364113 #17 Jul 22 2023 21:19:56 %S A364113 1,1,1,1,3,1,1,5,19,1,1,7,73,147,1,1,9,163,1445,1251,1,1,11,289,5623, %T A364113 33001,11253,1,1,13,451,14409,235251,819005,104959,1,1,15,649,29531, %U A364113 908001,11009257,21460825,1004307,1,1,17,883,52717,2511251,65898009,554159719,584307365,9793891,1 %N A364113 Square array read by ascending antidiagonals: T(n,k) = [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x))^n for n, k >= 0. %C A364113 The two types of Apéry numbers A005258 and A005259 are related to the Legendre polynomials by A005258(k) = [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x)) and A005259(k) = [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x))^2 and thus form rows 1 and 2 of the present array. %C A364113 Both types of Apéry numbers satisfy the supercongruences %C A364113 1) u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) %C A364113 and the shifted supercongruences %C A364113 2) u(n*p^r - 1) == u(n*p^(r-1) - 1) (mod p^(3*r)) %C A364113 for all primes p >= 5 and positive integers n and r. %C A364113 We conjecture that each row sequence of the present table satisfies the same pair of supercongruences. %e A364113 Square array begins %e A364113 n\k| 0 1 2 3 4 5 6 7 %e A364113 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %e A364113 0 | 1 1 1 1 1 1 1 1 %e A364113 1 | 1 3 19 147 1251 11253 104959 1004307 %e A364113 2 | 1 5 73 1445 33001 819005 21460825 584307365 %e A364113 3 | 1 7 163 5623 235251 11009257 554159719 29359663991 %e A364113 4 | 1 9 289 14409 908001 65898009 5246665201 445752724041 %e A364113 5 | 1 11 451 29531 2511251 251831261 28224521263 3423024241627 %e A364113 6 | 1 13 649 52717 5665001 730485013 106898093065 17144295476461 %p A364113 T(n,k) := coeff(series(1/(1-x)* LegendreP(k,(1+x)/(1-x))^n, x, 11), x, k): %p A364113 # display as a square array %p A364113 seq(print(seq(T(n, k), k = 0..10)), n = 0..10); %p A364113 # display as a sequence %p A364113 seq(seq(T(n-k, k), k = 0..n), n = 0..10); %Y A364113 Cf. A005258 (row 1), A005259 (row 2), A364114 (row 3), A364115 (row 4), A364116 (main diagonal), A364117 (first subdiagonal). %Y A364113 Cf. A108625, A143007, A364298. %K A364113 nonn,tabl,easy %O A364113 0,5 %A A364113 _Peter Bala_, Jul 07 2023