A364121 Stolarsky representation of n.
0, 1, 11, 10, 111, 101, 110, 1111, 100, 1011, 1101, 1110, 11111, 1010, 1001, 10111, 1100, 11011, 11101, 11110, 111111, 1000, 10101, 10011, 10110, 101111, 11010, 11001, 110111, 11100, 111011, 111101, 111110, 1111111, 10100, 10001, 101011, 10010, 100111, 101101
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Casey Mongoven, Description of Stolarsky Representations.
Crossrefs
Programs
-
Mathematica
stol[n_] := stol[n] = If[n == 1, {}, If[n != Round[Round[n/GoldenRatio]*GoldenRatio], Join[stol[Floor[n/GoldenRatio^2] + 1], {0}], Join[stol[Round[n/GoldenRatio]], {1}]]]; a[n_] := FromDigits[stol[n]]; Array[a, 100]
-
PARI
stol(n) = {my(phi=quadgen(5)); if(n==1, [], if(n != round(round(n/phi)*phi), concat(stol(floor(n/phi^2) + 1), [0]), concat(stol(round(n/phi)), [1])));} a(n) = fromdigits(stol(n));
Formula
Description of an algorithm for calculating a(n):
Let s(1) = {} be the empty set, and for n > 1, let s(n) be the sequence of digits of a(n). s(n) can be calculated recursively by:
1. If n = round(round(n/phi)*phi) then s(n) = s(floor(n/phi^2) + 1) U {0}, where phi is the golden ratio (A001622) and U denotes concatenation.
2. If n != round(round(n/phi)*phi) then s(n) = s(round(n/phi)) U {1}.