This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364142 #11 Aug 02 2023 13:47:29 %S A364142 2,3,23,29,41,53,83,89,173,179,239,251,281,293,359,419,431,491,641, %T A364142 653,683,719,743,761,953,1289,1409,1439,1583,1973,2039,2063,2069,2351, %U A364142 2543,2693,2741,2819,2903,2963,3491,3761,3821,4019,4073,4271,4793,4871,5231,6173,6329,6491,6983,7043,7103 %N A364142 Sophie Germain primes p such that both p and the corresponding safe prime 2*p+1 have distinct digits. %C A364142 Members p of A005384 such that both p and 2*p+1 are in A010784. %C A364142 The last term is a(1514) = 493250861 and the corresponding safe prime is 2*493250861 + 1 = 986501723. %C A364142 The b-file contains all 1514 terms. %H A364142 Robert Israel, <a href="/A364142/b364142.txt">Table of n, a(n) for n = 1..1514</a> %e A364142 a(4) = 29 is a term because 29 and 2*29 + 1 = 59 are both primes and both have distinct digits. %p A364142 filter:= proc(p) local L; %p A364142 L:= convert(p,base,10); %p A364142 if nops(L) <> nops(convert(L,set)) or not isprime(2*p+1) then return false fi; %p A364142 L:= convert(2*p+1,base,10); %p A364142 nops(L) = nops(convert(L,set)) %p A364142 end proc: %p A364142 select(filter, [seq(ithprime(i),i=1..1000)]); %t A364142 s = {p = 2}; Do[p = NextPrime[p]; While[! PrimeQ[q = 2*p + 1] || 1< %t A364142 Max[DigitCount[q]] || 1 < Max[DigitCount[p]], p = NextPrime[p]]; AppendTo[s, %t A364142 p], {1515}]; s %Y A364142 Cf. A005384, A005385, A010784. %K A364142 nonn,base,fini,full %O A364142 1,1 %A A364142 _Zak Seidov_ and _Robert Israel_, Jul 10 2023