This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364143 #27 Aug 08 2023 18:04:30 %S A364143 2,5,3,2,2,3,10,2,7,9,12,11,6,11,14,3,11,29,14,7,23,4,49,8,24,5,17,12, %T A364143 38,46,27,34,6,14,22,66,11,66,14,11,6,77,36,63,96,11,50,3,19,96,52,41, %U A364143 66,33,11,3,14,121,66,89,34,127,51,2,86,54,181,48,8 %N A364143 a(n) is the minimal number of consecutive squares needed to sum to A216446(n). %H A364143 Project Euler, <a href="https://projecteuler.net/problem=125">Problem 125: Palindromic Sums</a>. %e A364143 a(8) = 7 is because 7 consecutive squares are needed to sum to A216446(8) = 595 = 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2. %o A364143 (Python) %o A364143 is_palindrome = lambda n: str(n) == str(n)[::-1] %o A364143 def g(L): %o A364143 L2, squares, D = L*L, [x*x for x in range(0, L + 1)], {} %o A364143 for i in range(1, L + 1): %o A364143 for j in range(i + 1, L + 1): %o A364143 candidate = sum(squares[i:j+1]) %o A364143 if candidate < L2 and is_palindrome(candidate): %o A364143 if candidate in D: %o A364143 D[candidate]= min(D[candidate], j-i-1) %o A364143 else: %o A364143 D[candidate] = j-i+1 %o A364143 return [D[k] for k in sorted(D.keys())] %o A364143 print(g(1000)) %Y A364143 Cf. A216446, A034705, A180436, A267600. %K A364143 nonn,base %O A364143 1,1 %A A364143 _DarĂo Clavijo_, Jul 10 2023