A364246 a(1) = 1. Thereafter, a(n) is the least novel multiple of either prime(k+1) if rad(a(n-1)) = A002110(k), or Product_{prime q; q < gpf(a(n-1)); and q!|a(n-1)} q otherwise.
1, 2, 3, 4, 6, 5, 12, 10, 9, 8, 15, 14, 30, 7, 60, 21, 20, 18, 25, 24, 35, 36, 40, 27, 16, 33, 70, 39, 770, 42, 45, 22, 105, 26, 1155, 28, 75, 32, 48, 50, 51, 10010, 54, 55, 84, 65, 462, 80, 57, 170170, 63, 90, 49, 120, 56, 135, 34, 15015, 38, 255255, 44, 210
Offset: 1
Keywords
Examples
a(5) = 6 a primorial number so the next term is the smallest prime not dividing 6, thus a(7) = 5. a(26) = 33 = 3*11 and the product of primes < 11 which do not divide 11 is 2*5*7 = 70, which has not occurred previously, therefore a(27) = 70.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Log log scatterplot of log_10(a(n)), n = 1..2^16, highlighting prime a(n) in red.
Programs
-
Mathematica
nn = 120; c[] := False; m[] := 1; a[1] = j = 1; c[1] = True; f[x_] := If[# == Prime@ Range[PrimePi@ #[[-1]]], Prime[PrimePi@ #[[-1]] + 1], Times @@ Complement[Prime@ Range[PrimePi@ #[[-1]] - 1], #]] &[ FactorInteger[x][[All, 1]]]; Do[While[Set[k, f[j]]; c[k m[k]], m[k]++]; k *= m[k]; Set[{a[n], c[k], j}, {k, True, k}], {n, 2, nn}]; Array[a, nn] (* Michael De Vlieger, Jul 17 2023 *)
Extensions
More terms from Michael De Vlieger, Jul 17 2023
Comments