A364160 Numbers whose least prime factor has the greatest exponent.
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 52, 53, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 76, 79, 80, 81, 83, 84, 88, 89, 92, 96, 97, 99, 101, 103, 104, 107, 109, 112, 113, 116
Offset: 1
Keywords
Examples
The prime factorization of 600 is 2*2*2*3*5*5, and 3 > max(1,2), so 600 is in the sequence. The prime factorization of 180 is 2*2*3*3*5, but 2 <= max(2,1), so 180 is not in the sequence. The terms together with their prime indices begin: 1: {} 29: {10} 67: {19} 2: {1} 31: {11} 68: {1,1,7} 3: {2} 32: {1,1,1,1,1} 71: {20} 4: {1,1} 37: {12} 72: {1,1,1,2,2} 5: {3} 40: {1,1,1,3} 73: {21} 7: {4} 41: {13} 76: {1,1,8} 8: {1,1,1} 43: {14} 79: {22} 9: {2,2} 44: {1,1,5} 80: {1,1,1,1,3} 11: {5} 45: {2,2,3} 81: {2,2,2,2} 12: {1,1,2} 47: {15} 83: {23} 13: {6} 48: {1,1,1,1,2} 84: {1,1,2,4} 16: {1,1,1,1} 49: {4,4} 88: {1,1,1,5} 17: {7} 52: {1,1,6} 89: {24} 19: {8} 53: {16} 92: {1,1,9} 20: {1,1,3} 56: {1,1,1,4} 96: {1,1,1,1,1,2} 23: {9} 59: {17} 97: {25} 24: {1,1,1,2} 60: {1,1,2,3} 99: {2,2,5} 25: {3,3} 61: {18} 101: {26} 27: {2,2,2} 63: {2,2,4} 103: {27} 28: {1,1,4} 64: {1,1,1,1,1,1} 104: {1,1,1,6}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local F,i; F:= ifactors(n)[2]; if nops(F) = 1 then return true fi; i:= min[index](F[..,1]); andmap(t -> F[t,2] < F[i,2], {$1..nops(F)} minus {i}) end proc: filter(1):= true: select(filter, [$1..200]); # Robert Israel, Sep 17 2024
-
Mathematica
Select[Range[100],First[Last/@FactorInteger[#]] > Max@@Rest[Last/@FactorInteger[#]]&]
Comments