cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364167 Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^3 * (1 + A(x)^3).

This page as a plain text file.
%I A364167 #41 Jul 23 2023 07:46:43
%S A364167 1,2,18,234,3570,59586,1053570,19392490,367677090,7131417282,
%T A364167 140834140722,2822214963882,57243994984722,1172991472484610,
%U A364167 24245748916730658,504935751379031082,10584721220759172162,223163804001804187266,4729176407109705542994,100676187744957784842090
%N A364167 Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^3 * (1 + A(x)^3).
%H A364167 Alois P. Heinz, <a href="/A364167/b364167.txt">Table of n, a(n) for n = 0..737</a> (first 50 terms from Christian N. Hofmann)
%F A364167 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(3*n+3*k+1,n)/(3*n+3*k+1).
%p A364167 a:= n-> sum(binomial(n, k)*binomial(3*n+3*k+1, n)/(3*n+3*k+1), k=0..n):
%p A364167 seq(a(n), n=0..49); # _Christian N. Hofmann_, Jul 14 2023
%o A364167 (PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n+3*k+1, n)/(3*n+3*k+1));
%Y A364167 Cf. A144097, A153231, A363311.
%K A364167 nonn,easy
%O A364167 0,2
%A A364167 _Seiichi Manyama_, Jul 13 2023