cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364168 Numbers that can be written in more than one way in the form (j+2k)^2-(j+k)^2-j^2 with j,k>0.

This page as a plain text file.
%I A364168 #95 Jun 02 2025 14:45:32
%S A364168 15,27,32,35,36,39,51,55,60,63,64,75,84,87,91,95,96,99,100,108,111,
%T A364168 115,119,123,128,132,135,140,143,144,147,155,156,159,160,171,175,180,
%U A364168 183,187,192,195,196,203,204,207,215,219,220,224,228,231,235,240,243,247,252,255
%N A364168 Numbers that can be written in more than one way in the form (j+2k)^2-(j+k)^2-j^2 with j,k>0.
%C A364168 From _Darío Clavijo_, Mar 05 2025: (Start)
%C A364168 Also, numbers h that can be written as a difference of squares such as h=4*y^2-x^2 where x=2*y-p and y=(p+q)/4 and p<3*q with p and q divisors of h.
%C A364168 a(n) == 0 or 3 (mod 4). (End).
%C A364168 From _Darío Clavijo_, Apr 22 2025: (Start)
%C A364168 Numbers that can be written in more than one way in the form (j+k) * (3k-j).
%C A364168 Every term is congruent to {0, 3, 4, 7, 11, 12, 15} (mod 16). (End).
%H A364168 Project Euler, <a href="https://projecteuler.net/problem=135">Problem 135: Same Differences</a>.
%e A364168 27 is a term since (6+2*3)^2 - (6+3)^2 - 6^2 = (20+2*7)^2 - (20+7)^2 - 20^2 = 27.
%o A364168 (Python)
%o A364168 from math import isqrt
%o A364168 def isok(h):
%o A364168     if (h & 15) not in [0, 3, 4, 7, 11, 12, 15]: return False
%o A364168     c = 0
%o A364168     for p in range(1, isqrt(h)+1):
%o A364168         q, r = divmod(h,p)
%o A364168         if r == 0 and (pq := p + q) & 3 == 0:
%o A364168             t = pq >> 2;
%o A364168             c += (t < p) + (p != q and t < q)
%o A364168             if c > 1: return True
%o A364168 print([h for h in range(1, 256) if isok(h)])
%Y A364168 Cf. A000005, A000290, A027750, A014601.
%K A364168 nonn
%O A364168 1,1
%A A364168 _Darío Clavijo_, Jul 12 2023