This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364173 #10 Jul 16 2023 05:51:09 %S A364173 1,128,43758,17039360,7012604550,2976412336128,1288415796384780, %T A364173 565399665327996928,250622090889055155270,111950839825145979207680, %U A364173 50312973039218473430585508,22723567527558510746926055424,10304958075870392958137083227804 %N A364173 a(n) = (9*n)!*(2*n)!*(3*n/2)!/((9*n/2)!*(4*n)!*(3*n)!*n!). %C A364173 A295440, defined by A295440(n) = (18*n)!*(4*n)!*(3*n)! / ((9*n)!*(8*n)!*(6*n)!*(2*n)!), is one of the 52 sporadic integral factorial ratio sequences of height 1 found by V. I. Vasyunin (see Bober, Table 2, Entry 10). Here we are essentially considering the sequence {A295440(n/2) : n >= 0}. Fractional factorials are defined in terms of the gamma function; for example, (3*n/2)! := Gamma(1 + 3*n/2). %C A364173 This sequence is only conjecturally an integer sequence. %C A364173 Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r. %H A364173 J. W. Bober, <a href="http://arxiv.org/abs/0709.1977">Factorial ratios, hypergeometric series, and a family of step functions</a>, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., 79, Issue 2, (2009), 422-444. %F A364173 a(n) ~ c^n * 1/sqrt(4*Pi*n), where c = (3^7)/(2^3) * sqrt(3) = 473.4993895191418.... %F A364173 a(n) = 108*(9*n - 1)*(9*n - 5)*(9*n - 7)*(9*n - 11)*(9*n - 13)*(9*n - 17)/(n*(n - 1)*(4*n - 1)*(4*n - 3)*(4*n - 5)*(4*n - 7))*a(n-2) for n >= 2 with a(0) = 1 and a(1) = 128. %p A364173 seq( simplify((9*n)!*(2*n)!*(3*n/2)!/((9*n/2)!*(4*n)!*(3*n)!*n!)) , n = 0..15); %Y A364173 Cf. A276100, A276101, A276102, A295431, A295440, A347854, A347855, A347856, A347857, A347858, A364172 - A364185. %K A364173 nonn,easy %O A364173 0,2 %A A364173 _Peter Bala_, Jul 13 2023