This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364192 #14 Oct 18 2023 04:50:42 %S A364192 0,1,2,1,3,2,4,1,2,3,5,2,6,4,3,1,7,1,8,3,4,5,9,2,3,6,2,4,10,3,11,1,5, %T A364192 7,4,2,12,8,6,3,13,4,14,5,3,9,15,2,4,1,7,6,16,1,5,4,8,10,17,3,18,11,4, %U A364192 1,6,5,19,7,9,4,20,2,21,12,2,8,5,6,22,3,2 %N A364192 High (i.e., greatest) co-mode in the multiset of prime indices of n. %C A364192 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A364192 We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}. %C A364192 Extending the terminology of A124943, the "high co-mode" in a multiset is the greatest co-mode. %F A364192 a(n) = A000720(A359612(n)). %F A364192 A359612(n) = A000040(a(n)). %e A364192 The prime indices of 2100 are {1,1,2,3,3,4}, with co-modes {2,4}, so a(2100) = 4. %t A364192 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A364192 comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&]; %t A364192 Table[If[n==1,0,Max[comodes[prix[n]]]],{n,30}] %Y A364192 For prime factors instead of indices we have A359612, low A067695. %Y A364192 For mode instead of co-mode we have A363487 (triangle A363953), low A363486 (triangle A363952). %Y A364192 The version for median instead of co-mode is A363942, low A363941. %Y A364192 Positions of 1's are A364061, counted by A364062. %Y A364192 The low version is A364191, 1's at A364158 (counted by A364159). %Y A364192 A112798 lists prime indices, length A001222, sum A056239. %Y A364192 A362611 counts modes in prime indices, triangle A362614. %Y A364192 A362613 counts co-modes in prime indices, triangle A362615. %Y A364192 Ranking and counting partitions: %Y A364192 - A356862 = unique mode, counted by A362608 %Y A364192 - A359178 = unique co-mode, counted by A362610 %Y A364192 - A362605 = multiple modes, counted by A362607 %Y A364192 - A362606 = multiple co-modes, counted by A362609 %Y A364192 Cf. A241131, A327473, A327476, A360005, A360015, A362612, A363740. %K A364192 nonn %O A364192 1,3 %A A364192 _Gus Wiseman_, Jul 16 2023