This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364193 #7 Jul 17 2023 17:59:34 %S A364193 0,1,2,2,4,4,7,9,13,17,24,32,43,58,75,97,130,167,212,274,346,438,556, %T A364193 695,865,1082,1342,1655,2041,2511,3067,3756,4568,5548,6728,8130,9799, %U A364193 11810,14170,16980,20305,24251,28876,34366,40781,48342,57206,67597,79703 %N A364193 Number of integer partitions of n where the least part is the unique mode. %C A364193 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}. %e A364193 The a(1) = 1 through a(8) = 13 partitions: %e A364193 (1) (2) (3) (4) (5) (6) (7) (8) %e A364193 (11) (111) (22) (311) (33) (322) (44) %e A364193 (211) (2111) (222) (511) (422) %e A364193 (1111) (11111) (411) (3211) (611) %e A364193 (3111) (4111) (2222) %e A364193 (21111) (22111) (4211) %e A364193 (111111) (31111) (5111) %e A364193 (211111) (32111) %e A364193 (1111111) (41111) %e A364193 (221111) %e A364193 (311111) %e A364193 (2111111) %e A364193 (11111111) %t A364193 Table[If[n==0,0,Length[Select[IntegerPartitions[n], Last[Length/@Split[#]]>Max@@Most[Length/@Split[#]]&]]],{n,0,30}] %Y A364193 For greatest part and multiple modes we have A171979. %Y A364193 Allowing multiple modes gives A240303. %Y A364193 For greatest instead of least part we have A362612, ranks A362616. %Y A364193 For mean instead of least part we have A363723. %Y A364193 These partitions have ranks A364160. %Y A364193 A000041 counts integer partitions. %Y A364193 A362611 counts modes in prime factorization, A362613 co-modes. %Y A364193 A362614 counts partitions by number of modes, co-modes A362615. %Y A364193 A363486 gives least mode in prime indices, A363487 greatest. %Y A364193 A363952 counts partitions by low mode, A363953 high. %Y A364193 Ranking and counting partitions: %Y A364193 - A356862 = unique mode, counted by A362608 %Y A364193 - A359178 = unique co-mode, counted by A362610 %Y A364193 - A362605 = multiple modes, counted by A362607 %Y A364193 - A362606 = multiple co-modes, counted by A362609 %Y A364193 Cf. A002865, A008284, A070003, A098859, A102750, A237984, A327472, A360015. %K A364193 nonn %O A364193 0,3 %A A364193 _Gus Wiseman_, Jul 16 2023