A364214 Numbers whose canonical representation as a sum of distinct Jacobsthal numbers (A280049) is palindromic.
1, 2, 4, 5, 6, 10, 12, 15, 18, 21, 22, 30, 34, 42, 44, 49, 58, 63, 66, 71, 80, 85, 86, 102, 110, 126, 130, 146, 154, 170, 172, 183, 198, 209, 218, 229, 244, 255, 258, 269, 284, 295, 304, 315, 330, 341, 342, 374, 390, 422, 430, 462, 478, 510, 514, 546, 562, 594
Offset: 1
Examples
The first 10 terms are: n a(n) A280049(a(n)) -- ---- ------------- 1 1 1 2 2 11 3 4 101 4 5 111 5 6 1001 6 10 1111 7 12 10001 8 15 10101 9 18 11011 10 21 11111
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Position[Select[Range[1000], EvenQ[IntegerExponent[#, 2]] &], _?(PalindromeQ[IntegerDigits[#, 2]] &)] // Flatten
-
PARI
s(n) = if(n < 2, n > 0, n = s(n-1); until(valuation(n, 2)%2 == 0, n++); n); \\ A003159 is(n) = {my(d = binary(s(n))); d == Vecrev(d);}
Comments