cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A364216 Jacobsthal-Niven numbers: numbers that are divisible by the sum of the digits in their Jacobsthal representation (A280049).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 11, 12, 14, 15, 16, 20, 22, 24, 27, 28, 32, 33, 36, 40, 42, 43, 44, 45, 46, 48, 51, 52, 54, 56, 57, 60, 68, 72, 75, 76, 84, 86, 87, 88, 92, 93, 95, 96, 99, 100, 104, 105, 108, 112, 115, 117, 120, 125, 126, 128, 129, 132, 135, 136, 138, 140
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2023

Keywords

Comments

Numbers k such that A364215(k) | k.
A007583 is a subsequence since A364215(A007583(n)) = 1 for n >= 0.

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{m = 1, s = {}}, Do[If[Divisible[k, DigitCount[m, 2, 1]], AppendTo[s, k]]; While[m++; OddQ[IntegerExponent[m, 2]]], {k, 1, kmax}]; s]; seq[140]
  • PARI
    lista(kmax) = {my(m = 1); for(k = 1, kmax, if( !(k % sumdigits(m, 2)), print1(k,", ")); until(valuation(m, 2)%2 == 0, m++));}

A364217 Numbers k such that k and k+1 are both Jacobsthal-Niven numbers (A364216).

Original entry on oeis.org

1, 2, 3, 8, 11, 14, 15, 27, 32, 42, 43, 44, 45, 51, 56, 75, 86, 87, 92, 95, 99, 104, 125, 128, 135, 144, 155, 171, 176, 182, 183, 195, 204, 264, 267, 275, 287, 305, 344, 363, 375, 387, 428, 444, 455, 474, 497, 512, 524, 535, 544, 545, 552, 555, 581, 605, 623, 639
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2023

Keywords

Comments

A001045(2*n+1) = A007583(n) = (2^(2*n+1) + 1)/3 is a term for n >= 0, since its representation is 2*n 1's, so A364215(A001045(2*n+1)) = 1 divides A001045(2*n+1), and the representation of A001045(2*n+1) + 1 = (2^(2*n+1) + 4)/3 is max(2*n-1, 0) 0's between 2 1's, so A364215(A001045(2*n+1) + 1) = 2 which divides (2^(2*n+1) + 4)/3.

Crossrefs

Programs

  • Mathematica
    consecJacobsthalNiven[kmax_, len_] := Module[{m = 1, c = Table[False, {len}], s = {}}, Do[c = Join[Rest[c], {Divisible[k, DigitCount[m, 2, 1]]}]; While[m++; OddQ[IntegerExponent[m, 2]]]; If[And @@ c, AppendTo[s, k - len + 1]], {k, 1, kmax}]; s]; consecJacobsthalNiven[640, 2]
  • PARI
    lista(kmax, len) = {my(m = 1, c = vector(len)); for(k = 1, kmax, c = concat(vecextract(c, "^1"), !(k % sumdigits(m, 2))); until(valuation(m, 2)%2 == 0, m++); if(vecsum(c) == len, print1(k-len+1, ", ")));}
    lista(640, 2)
Showing 1-2 of 2 results.