This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364233 #15 Dec 31 2023 12:42:22 %S A364233 1,0,2,0,0,6,0,0,0,24,0,0,0,0,120,0,0,0,0,2,718,0,0,0,0,0,4,5036,0,0, %T A364233 0,0,0,1,3,40316,0,0,0,0,0,0,0,18,362862,0,0,0,0,0,0,0,0,14,3628786,0, %U A364233 0,0,0,0,0,0,0,0,99,39916701,0,0,0,0,0,0,0,0,0,5,78,479001517 %N A364233 Triangle read by rows: T(n, k) is the number of n X n symmetric Toeplitz matrices of rank k using all the first n prime numbers integers. %H A364233 Wikipedia, <a href="https://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a> %e A364233 The triangle begins: %e A364233 1; %e A364233 0, 2; %e A364233 0, 0, 6; %e A364233 0, 0, 0, 24; %e A364233 0, 0, 0, 0, 120; %e A364233 0, 0, 0, 0, 2, 718; %e A364233 0, 0, 0, 0, 0, 4, 5036; %e A364233 ... %t A364233 T[n_,k_]:= Count[Table[MatrixRank[ToeplitzMatrix[Part[Permutations[Prime[Range[n]]], i]]],{i,n!}],k]; Table[T[n,k],{n,8},{k,n}]//Flatten %o A364233 (PARI) %o A364233 MkMat(v)={matrix(#v, #v, i, j, v[1+abs(i-j)])} %o A364233 row(n)={my(f=vector(n)); forperm(vector(n,i,prime(i)), v, f[matrank(MkMat(v))]++); f} \\ _Andrew Howroyd_, Dec 31 2023 %Y A364233 Cf. A000142 (row sums), A348891 (minimal nonzero absolute value determinant), A350955 (minimal determinant), A350956 (maximal determinant), A351021 (minimal permanent), A351022 (maximal permanent), A364234 (right diagonal). %K A364233 nonn,tabl %O A364233 1,3 %A A364233 _Stefano Spezia_, Jul 14 2023 %E A364233 Terms a(46) and beyond from _Andrew Howroyd_, Dec 31 2023