This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364265 #34 Jun 10 2024 00:07:01 %S A364265 323567034,431684330,468780388,481098980,577922904,639336984, %T A364265 715008644,720990620,726167154,735965384,769385252,808810638, %U A364265 822981560,831034918,839075510,847765554,879549670,895723268,902976710,903293468,904796814,918520420,940737005,944087484,982059364 %N A364265 The first term in a chain of at least 3 consecutive numbers each with exactly 6 distinct prime factors (i.e., belonging to A074969). %C A364265 To distinguish this from A259349: "Numbers n with exactly k distinct prime factors" means numbers with A001221(n) = omega(n) = k, which specifies that in the prime factorization n = Product_{i>=1} p_i^(e_i), e_i >= 1, the exponents are ignored, and only the size of the set of the (distinct) p_i is considered. In A259349, the numbers n are products of k distinct primes, which means in the prime factorization of n, all exponents e_i are equal to 1. (If all exponents e_i = 1, the n are squarefree, i.e., in A005117.) Rephrased: the n which are products of k distinct primes have A001221(n) = omega(n) = A001222(n) = bigomega(n) = k, whereas the n which have exactly k distinct prime factors are the superset of (weaker) requirement A001221(n) = omega(n) = k. - _R. J. Mathar_, Jul 18 2023 %H A364265 David A. Corneth, <a href="/A364265/b364265.txt">Table of n, a(n) for n = 1..10000</a> %F A364265 a(1) = A138206(3). %F A364265 {k: A001221(k) = A001221(k+1) = A001221(k+2) = 6}. %p A364265 omega := proc(n) %p A364265 nops(numtheory[factorset](n)) ; %p A364265 end proc: %p A364265 for k from 1 do %p A364265 if omega(k) = 6 then %p A364265 if omega(k+1) = 6 then %p A364265 if omega(k+2) = 6 then %p A364265 print(k) ; %p A364265 end if; %p A364265 end if; %p A364265 end if; %p A364265 end do: %o A364265 (PARI) upto(n) = {my(res = List(), streak = 0); forfactored(i = 2, n, if(#i[2]~ == 6, streak++; if(streak >= 3, listput(res, i[1] - 2)), streak = 0)); res} \\ _David A. Corneth_, Jul 18 2023 %Y A364265 Cf. A259349 (requires squarefree). Subsequence of A273879. %Y A364265 Cf. A364266 (5 distinct factors). %Y A364265 See also A001221, A001222, A005117. %Y A364265 Numbers divisible by d distinct primes: A246655 (d=1), A007774 (d=2), A033992 (d=3), A033993 (d=4), A051270 (d=5), A074969 (d=6), A176655 (d=7), A348072 (d=8), A348073 (d=9). %K A364265 nonn %O A364265 1,1 %A A364265 _R. J. Mathar_, Jul 16 2023 %E A364265 More terms from _David A. Corneth_, Jul 18 2023