A364266 The first term in a chain of at least 3 consecutive numbers each with exactly 5 distinct prime factors.
1042404, 3460280, 3818828, 3998664, 4638984, 4991964, 5540248, 5701254, 5715500, 5964958, 6772050, 6794084, 7237384, 7453964, 7459088, 7745318, 7757034, 7993194, 8083634, 8153430, 8168194, 8273628, 8340834, 8340980, 8414756, 8486994, 8698898, 8722634, 8758904
Offset: 1
Keywords
Examples
1042404 = 2^2*3*11*53*149, 1042405 = 5*6*143*29*79 and 1042406 = 2*17*23*31*43 each have 5 distinct prime factors, so 1042404 is in the sequence.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
omega := proc(n) nops(numtheory[factorset](n)) ; end proc: for k from 1 do if omega(k) = 5 then if omega(k+1) = 5 then if omega(k+2) = 5 then print(k) ; end if; end if; end if; end do:
-
Mathematica
seq[lim_] := Module[{s = {}, q1 = False, q2 = False, q3}, Do[q3 = PrimeNu[k] == 5; If[q1 && q2 && q3, AppendTo[s, k-2]]; q1 = q2; q2 = q3, {k, 3, lim}]; s]; seq[10^7] (* Amiram Eldar, Oct 01 2024 *)
Formula
a(1) = A087978(3).