cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364266 The first term in a chain of at least 3 consecutive numbers each with exactly 5 distinct prime factors.

Original entry on oeis.org

1042404, 3460280, 3818828, 3998664, 4638984, 4991964, 5540248, 5701254, 5715500, 5964958, 6772050, 6794084, 7237384, 7453964, 7459088, 7745318, 7757034, 7993194, 8083634, 8153430, 8168194, 8273628, 8340834, 8340980, 8414756, 8486994, 8698898, 8722634, 8758904
Offset: 1

Views

Author

R. J. Mathar, Jul 16 2023

Keywords

Examples

			1042404 = 2^2*3*11*53*149, 1042405 = 5*6*143*29*79 and 1042406 = 2*17*23*31*43 each have 5 distinct prime factors, so 1042404 is in the sequence.
		

Crossrefs

Cf. A192203 (subsequence for squarefree triples). Subsequence of A140079 (2 consec.) and of A006073.
Cf. A364308 (3 dist. factors), A364309 (4 dist. factors), A364265 (6 dist. factors), A001221, A087978.

Programs

  • Maple
    omega := proc(n)
        nops(numtheory[factorset](n)) ;
    end proc:
    for k from 1 do
        if omega(k) = 5 then
            if omega(k+1) = 5 then
                if omega(k+2) = 5 then
                    print(k) ;
                end if;
            end if;
        end if;
    end do:
  • Mathematica
    seq[lim_] := Module[{s  = {}, q1 = False, q2 = False, q3}, Do[q3 = PrimeNu[k] == 5; If[q1 && q2 && q3, AppendTo[s, k-2]]; q1 = q2; q2 = q3, {k, 3, lim}]; s]; seq[10^7] (* Amiram Eldar, Oct 01 2024 *)

Formula

a(1) = A087978(3).
{k: A001221(k) = A001221(k+1) = A001221(k+2) = 5}. - R. J. Mathar, Jul 18 2023