This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364272 #8 Aug 03 2023 09:04:15 %S A364272 0,0,0,0,0,0,1,0,1,0,3,1,4,3,8,6,11,10,17,16,26,25,39,39,54,60,82,84, %T A364272 116,126,160,177,222,242,302,337,402,453,542,601,722,803,936,1057, %U A364272 1234,1373,1601,1793,2056,2312,2658,2950,3395,3789,4281,4814,5452,6048 %N A364272 Number of strict integer partitions of n containing the sum of some subset of the parts. A variation of sum-full strict partitions. %C A364272 First differs from A316402 at a(16) = 11 due to (7,5,3,1). %e A364272 The a(6) = 1 through a(16) = 11 partitions (A=10): %e A364272 (321) . (431) . (532) (5321) (642) (5431) (743) (6432) (853) %e A364272 (541) (651) (6421) (752) (6531) (862) %e A364272 (4321) (5421) (7321) (761) (7431) (871) %e A364272 (6321) (5432) (7521) (6532) %e A364272 (6431) (9321) (6541) %e A364272 (6521) (54321) (7432) %e A364272 (7421) (7621) %e A364272 (8321) (8431) %e A364272 (8521) %e A364272 (A321) %e A364272 (64321) %t A364272 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#,{2,Length[#]}]]!={}&]],{n,0,30}] %Y A364272 The non-strict complement is A237667, ranks A364531. %Y A364272 The non-strict version is A237668, ranks A364532. %Y A364272 The complement in strict partitions is A364349, binary A364533. %Y A364272 The linear combination-free version is A364350. %Y A364272 For subsets of {1..n} we have A364534, complement A151897. %Y A364272 The binary version is A364670, allowing re-used parts A363226. %Y A364272 A000041 counts integer partitions, strict A000009. %Y A364272 A008284 counts partitions by length, strict A008289. %Y A364272 A108917 counts knapsack partitions, strict A275972, ranks A299702. %Y A364272 A236912 counts binary sum-free partitions, complement A237113. %Y A364272 A323092 counts double-free partitions, ranks A320340. %Y A364272 Cf. A007865, A025065, A085489, A093971, A111133, A240861, A320347, A325862, A363225, A364346. %K A364272 nonn %O A364272 0,11 %A A364272 _Gus Wiseman_, Aug 01 2023