This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364285 #24 Jul 20 2023 09:43:38 %S A364285 1,0,1,0,1,1,0,1,3,1,0,1,7,4,1,0,1,15,20,5,1,0,1,31,81,30,6,1,0,1,63, %T A364285 287,175,42,7,1,0,1,127,952,841,280,56,8,1,0,1,255,3025,4545,1638,420, %U A364285 72,9,1,0,1,511,9370,23820,10333,2730,600,90,10,1 %N A364285 Number T(n,k) of partitions of n with largest part k where each block of part i with multiplicity j is marked with a word of length i*j over an n-ary alphabet whose letters appear in alphabetical order and all n letters occur exactly once in the partition; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A364285 T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n. %C A364285 T(n,k) is also the number of endofunctions on [n] such that k is the range maximum and the number of elements that are mapped to m is divisible by m. %C A364285 T(4,2) = 7: (2211), (2121), (2112), (1221), (1212), (1122), (2222). %C A364285 T(5,3) = 20: (33322), (33232), (33223), (32332), (32323), (32233), (23332), (23323), (23233), (22333), (33311), (33131), (33113), (31331), (31313), (31133), (13331), (13313), (13133), (11333). %H A364285 Alois P. Heinz, <a href="/A364285/b364285.txt">Rows n = 0..150, flattened</a> %e A364285 T(4,1) = 1: 1111abcd. %e A364285 T(4,2) = 7: 2ab11cd, 2ac11bd, 2ad11bc, 2bc11ad, 2bd11ac, 2cd11ab, 22abcd. %e A364285 T(4,3) = 4: 3abc1d, 3abd1c, 3acd1b, 3bcd1a. %e A364285 T(4,4) = 1: 4abcd. %e A364285 Triangle T(n,k) begins: %e A364285 1; %e A364285 0, 1; %e A364285 0, 1, 1; %e A364285 0, 1, 3, 1; %e A364285 0, 1, 7, 4, 1; %e A364285 0, 1, 15, 20, 5, 1; %e A364285 0, 1, 31, 81, 30, 6, 1; %e A364285 0, 1, 63, 287, 175, 42, 7, 1; %e A364285 0, 1, 127, 952, 841, 280, 56, 8, 1; %e A364285 0, 1, 255, 3025, 4545, 1638, 420, 72, 9, 1; %e A364285 ... %p A364285 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A364285 add(b(n-i*j, i-1)*binomial(n, i*j), j=0..n/i))) %p A364285 end: %p A364285 T:= (n, k)-> b(n, k)-`if`(k=0, 0, b(n, k-1)): %p A364285 seq(seq(T(n, k), k=0..n), n=0..12); %Y A364285 Columns k=0-2 give: A000007, A057427, A000225(n-1). %Y A364285 Row sums give A178682. %Y A364285 T(2n,n) gives A364322. %Y A364285 Cf. A364310. %K A364285 nonn,tabl %O A364285 0,9 %A A364285 _Alois P. Heinz_, Jul 17 2023