This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364298 #8 Jul 20 2023 10:10:40 %S A364298 1,1,1,1,3,19,1,5,73,721,1,7,163,3747,49251,1,9,289,10805,329001, %T A364298 5370751,1,11,451,23623,1179251,44127003,859748023,1,13,649,43929, %U A364298 3100001,190464755,8405999785,190320431953,1,15,883,73451,6751251,589050007,42601840975,2160445363107 %N A364298 Square array read by ascending antidiagonals: T(n,k) = [x^k] 1/(1 + x) * Legendre_P(k, (1 - x)/(1 + x))^(-n) for n >= 1, k >= 0. %C A364298 In the square array A364113, the k-th entry in row n is defined as [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x))^n. Here we essentially extend A364113 to negative values of n. %C A364298 The two types of Apéry numbers A005258 and A005259 are related to the Legendre polynomials by A005258(k) = [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x)) and A005259(k) = [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x))^2 and thus form rows 1 and 2 of the array A364113 %C A364298 Both types of Apéry numbers satisfy the supercongruences %C A364298 1) u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) %C A364298 and the shifted supercongruences %C A364298 2) u(n*p^r - 1) == u(n*p^(r-1) - 1) (mod p^(3*r)) %C A364298 for all primes p >= 5 and positive integers n and r. %C A364298 We conjecture that each row sequence of the present table satisfies the same pair of supercongruences. %e A364298 Square array begins %e A364298 n\k| 0 1 2 3 4 5 6 %e A364298 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %e A364298 1 | 1 1 19 721 49251 5370751 859748023 %e A364298 2 | 1 3 73 3747 329001 44127003 8405999785 %e A364298 3 | 1 5 163 10805 1179251 190464755 42601840975 %e A364298 4 | 1 7 289 23623 3100001 589050007 152184210193 %e A364298 5 | 1 9 451 43929 6751251 1479318759 434790348679 %e A364298 6 | 1 11 649 73451 12953001 3219777011 1062573281785 %p A364298 T(n,k) := coeff(series(1/(1+x)* LegendreP(k,(1-x)/(1+x))^(-n), x, 11), x, k): %p A364298 # display as a square array %p A364298 seq(print(seq(T(n, k), k = 0..10)), n = 1..10); %p A364298 # display as a sequence %p A364298 seq(seq(T(n-k, k), k = 0..n-1), n = 1..10); %Y A364298 A364299 (row 1), A364300 (row 2), A364301 (main diagonal), A364302 (first subdiagonal). Cf. A005258, A005259, A143007, A364113. %K A364298 nonn,tabl,easy %O A364298 1,5 %A A364298 _Peter Bala_, Jul 18 2023