cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364312 Irregular triangle T read by rows, giving in row n the nonnegative coefficients of polynomials of height n and degree k (of decreasing powers), for k = 1, 2, ..., n-1, used for Cantor's counting of algebraic numbers, written for m = 1, 2, ..., A364313(n), for n >= 2, and for n = 1 the degree is k = 1.

This page as a plain text file.
%I A364312 #22 Jul 22 2023 12:38:26
%S A364312 1,0,1,1,2,1,1,2,1,0,1,3,1,1,3,2,0,1,1,0,2,1,1,1,4,1,1,4,3,2,2,3,3,0,
%T A364312 1,1,0,3,2,1,1,1,2,1,1,1,2,2,0,0,1,1,0,0,2,1,1,0,1,1,0,1,1,1,0,0,0,1,
%U A364312 5,1,1,5,4,0,1,1,0,4,3,0,2,2,0,3,3,1,1,1,3,1,1,1,3,2,2,1,2,1,2,1,2,2
%N A364312 Irregular triangle T read by rows, giving in row n the nonnegative coefficients of polynomials of height n and degree k (of decreasing powers), for k = 1, 2, ..., n-1, used for Cantor's counting of algebraic numbers, written for m = 1, 2, ..., A364313(n), for n >= 2, and for n = 1 the degree is k = 1.
%C A364312 The length of row n is A364313(n). Different orders k are separated by a semicolon in the examples below.
%C A364312 The number of polynomials given from row n is A364314(n).
%C A364312 The entries for k = n-1 are only present for n >= 2 and A001227(n-1) = 1, that is, n = 2^q + 1 = A000051(q), for q >= 0. This is because otherwise x^(n-1) + 1 and x^(n-1) - 1 are both reducible (factorize over the integers).
%C A364312 For Cantor's counting (and determination) of algebraic numbers these polynomials have later to be signed, keeping the positive leading coefficient. See the example for n = 4 below. Complex solutions are omitted if real algebraic numbers are counted.
%C A364312 The polynomials with nonnegative coefficients recorded here are sometimes reducible over the integers. But in this case irreducible signed versions exist. E.g., for n = 6 and k = 2 the polynomial x^2 + 3*x + 2 = (x + 1)*(x + 2) is recorded as [1,3,2] (falling powers of x), because x^2 + 3*x - 2 and x^2 - 3*x - 2 are irreducible, each having two real solutions.
%C A364312 The number of distinct real solutions of the signed polynomials of degree k and height n is given in A364315(n, k). The total number is A364316(n). Note that no repetition of real solutions already obtained for lower heights can appear due to irreducibility. For the list of all real algebraic numbers for heights 1 to 7 see the W. Lang link.
%C A364312 The coefficients of the polynomials are determined from the relative prime compositions of K = n - (k-1). The order is taken from the corresponding partitions, with rising number of parts m, and for given m the order is anti-lexicographic (e.g., [4,1,1], [3,2,1] for K = 6 and m = 3). For each partition the compositions are ordered also anti-lexicographically, not considering the possible 0 parts which are distributed according to decreasing powers of x (e.g., [3,1,0,1], [3,0,1,1], [1,3,0,1], [1,0,3,1], [1,1,0,3], [1,0,1,3]).
%H A364312 Georg Cantor, <a href="https://gdz.sub.uni-goettingen.de/id/PPN243919689_0077?tify=%7B%22view%22:%22info%22,%22pages%22:%5B266%5D%7D">Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen</a>, Journal f. d. reine u. angew. Math. 77 (1874), 258-262.
%H A364312 Georg Cantor, <a href="https://www.math.byu.edu/~grant/courses/cantor1874.pdf">On a Property of the Class of all Real Algebraic Numbers</a>, (English version).
%H A364312 Wolfdieter Lang, <a href="https://arxiv.org/abs/2307.10645">Cantor's List of Real Algebraic Numbers of Heights 1 to 7</a>, arXiv:2307.10645 [math.NT], 2023.
%e A364312 The irregular triangle T, with entries T(n, m), begins: (increasing k >= 1 values are separated by ;)
%e A364312 n\m   1  2    3  4    5  6  7    8  9 10   11 12 13 ...
%e A364312 1:   [1, 0]
%e A364312 2:   [1, 1]
%e A364312 3:   [2, 1], [1, 2]; [1, 0, 1]
%e A364312 4:   [3, 1], [1, 3]; [2, 0, 1], [1, 0, 2], [1, 1, 1]
%e A364312 ...
%e A364312 n = 5: [4, 1], [1, 4], [3, 2], [2, 3]; [3, 0, 1], [1, 0, 3], [2, 1, 1], [1, 2, 1], [1, 1, 2]; [2, 0, 0, 1], [1, 0, 0, 2], [1, 1, 0, 1], [1, 0, 1, 1]; [1, 0, 0, 0, 1]
%e A364312 ---------
%e A364312 n = 6: [5, 1], [1, 5]; [4, 0, 1], [1, 0, 4], [3, 0, 2], [2, 0, 3], [3, 1, 1], [1, 3, 1], [1, 1, 3], [2, 2, 1], [2, 1, 2], [1, 2, 2]; [3, 0, 0, 1], [1, 0, 0, 3], [2, 1, 0, 1], [2, 0, 1, 1], [1, 2, 0, 1], [1, 0, 2, 1], [1, 1, 0, 2], [1, 0, 1, 2], [1, 1, 1, 1]; [2, 0, 0, 0, 1], [1, 0, 0, 0, 2], [1, 1, 0, 0, 1], [1, 0, 1, 0, 1], [1, 0, 0, 1, 1]
%e A364312 ---------
%e A364312 n = 7: [6, 1], [1, 6], [5, 2], [2, 5], [4, 3], [3, 4]; [5, 0, 1], [1, 0, 5], [4, 1, 1], [1, 4, 1], [1, 1, 4], [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 3, 2], [1, 2, 3]; [4, 0, 0, 1], [1, 0, 0, 4], [3, 0, 0, 2], [2, 0, 0, 3], [3, 1, 0, 1], [3, 0, 1, 1], [1, 3, 0, 1], [1, 0, 3, 1], [1, 1, 0, 3], [1, 0, 1, 3], [2, 2, 0, 1], [2, 0, 2, 1], [2, 1, 0, 2], [2, 0, 1, 2], [1, 2, 0, 2], [1, 0, 2, 2], [2, 1, 1, 1], [1, 2, 1, 1], [1, 1, 2, 1], [1, 1, 1, 2]; [3, 0, 0, 0, 1], [1, 0, 0, 0, 3], [2, 1, 0, 0, 1], [2, 0, 1, 0, 1], [2, 0, 0, 1, 1], [1, 2, 0, 0, 1], [1, 0, 2, 0, 1], [1, 0, 0, 2, 1], [1, 1, 0, 0, 2], [1, 0, 1, 0, 2], [1, 0, 0, 1, 2], [1, 1, 1, 0, 1], [1, 1, 0, 1, 1], [1, 0, 1, 1, 1]; [2, 0, 0, 0, 0, 1],  [1, 0, 0, 0, 0, 2], [1, 1, 0, 0, 0, 1], [1, 0, 1, 0, 0, 1], [1, 0, 0, 1, 0, 1], [1, 0, 0, 0, 1, 1]
%e A364312 -------
%e A364312 x^6 + 1 = (x^2 + 1)*(x^4 - x^2 + 1), hence no [1, 0, 0, 0, 0, 0, 1] recorded, because x^6 - 1 also factorizes.
%e A364312 ...
%e A364312 ---------------------------------------------------------------------------
%e A364312 Polynomials: n = 4, degree k = 1:  3*x + 1, x + 3; k = 2: 2*x^2 + 1, x^2 + 2, x^2 + x + 1; k = 3: no entry [1, 0, 0, 1], because x^3 + 1 factorizes, as well as x^3 - 1.
%e A364312 ---------------------------------------------------------------------------
%e A364312 Height n = 4, degree k = 2, with signed polynomials:
%e A364312 [2, 0, 1] for 2*x^2 + 1, 2*x^2 - 1, [1, 0, 2] for x^2 + 2, x^2 - 2, and [1, 1, 1] for x^2 + x + 1, x^2 + x - 1, x^2 - x + 1, x^2 - x - 1. The corresponding real algebraic numbers come in signed pairs only from 2*x^2 - 1, x^2 - 2, x^2 + x - 1, and x^2 - x - 1, namely, -sqrt(1/2), +sqrt(1/2), -sqrt(2), +sqrt(2), -phi = -A001622, phi - 1, and -(phi - 1), phi. So Cantor's phi (our Phi) is Phi(4, 2) = 8. Together with the four real k = 1 roots from the signed polynomials for [3, 1] and [1, 3] one finds Phi(4) = 12. See A362364.
%Y A364312 Cf. A000051, A001227, A001622, A005409, A364313, A364314, A364315, A364316.
%K A364312 nonn,tabf
%O A364312 1,5
%A A364312 _Wolfdieter Lang_, Jul 19 2023