This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364323 #16 Nov 29 2023 05:59:52 %S A364323 1,1,5,76,785,12181,377708,8009002,171155505,4073421919,168532394115, %T A364323 6213455777530,198071252771780,6383569557705276,204582355050315856, %U A364323 8766238064421938746,446196770370016437201,20584924968627941009331,920598569147050035793061 %N A364323 Number of partitions of 2n into n parts where each block of part i with multiplicity j is marked with a word of length i*j over a (2n)-ary alphabet whose letters appear in alphabetical order and all 2n letters occur exactly once in the partition. %H A364323 Alois P. Heinz, <a href="/A364323/b364323.txt">Table of n, a(n) for n = 0..450</a> %F A364323 a(n) = A364310(2n,n). %e A364323 a(2) = 5: 3abc1d, 3abd1c, 3acd1b, 3bcd1a, 22abcd. %p A364323 b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, %p A364323 add(b(n-i*j, i-1)*x^j*binomial(n, i*j), j=0..n/i)))) %p A364323 end: %p A364323 a:= n-> coeff(b(2*n$2), x, n): %p A364323 seq(a(n), n=0..23); %t A364323 b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, %t A364323 Sum[b[n - i*j, i - 1]*x^j*Binomial[n, i*j], {j, 0, n/i}]]]]; %t A364323 a[n_] := Coefficient[b[2n, 2n], x, n]; %t A364323 Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, Nov 29 2023, from Maple code *) %Y A364323 Cf. A364310. %K A364323 nonn %O A364323 0,3 %A A364323 _Alois P. Heinz_, Jul 18 2023