This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364327 #18 Jul 20 2023 10:38:47 %S A364327 1,1,3,13,115,851,13431,144516,2782571,47046307,1107742273, %T A364327 19263747713,657152726011,13657313316986,451605697223110, %U A364327 13377063396461138,531234399267707419,14563460779785318719,721703507708044677945,22141894282020163910406,1123287408943765640907425 %N A364327 Number of endofunctions on [n] such that the number of elements that are mapped to i is either 0 or a divisor of i. %H A364327 Alois P. Heinz, <a href="/A364327/b364327.txt">Table of n, a(n) for n = 0..400</a> %e A364327 a(0) = 1: (). %e A364327 a(1) = 1: (1). %e A364327 a(2) = 3: (22), (21), (12). %e A364327 a(3) = 13: (333), (322), (232), (223), (321), (231), (213), (312), (132), (123), (221), (212), (122). %p A364327 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+add( %p A364327 `if`(d>n, 0, b(n-d, i-1)*binomial(n, d)), d=numtheory[divisors](i)))) %p A364327 end: %p A364327 a:= n-> b(n$2): %p A364327 seq(a(n), n=0..23); %Y A364327 Cf. A066843, A178682, A334370, A364328, A364344. %K A364327 nonn %O A364327 0,3 %A A364327 _Alois P. Heinz_, Jul 18 2023