cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364334 a(2) = 0; a(n) = a(n-1) + 1 if n is an odd prime; otherwise a(n) = max{a(k) : k is divisor of n, 1 < k < n}.

Original entry on oeis.org

0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 2, 2, 1, 0, 1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 1, 2, 3, 1, 2, 0, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 1, 3, 4, 1, 2, 1, 1, 2, 3, 1, 2, 2, 2, 3, 4, 1, 2, 2, 2, 0, 2, 2, 3, 1, 3, 2, 3, 1, 2, 2, 1, 2, 2, 2, 3, 1, 1, 2, 3, 2, 1, 3, 3, 2, 3, 1, 2, 3, 2, 4, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 3, 4, 1, 2, 2, 2, 2
Offset: 2

Views

Author

Steven Lu, Jul 18 2023

Keywords

Comments

This sequence is a kind of measure of the "amount of information" in an integer. The post at Zhihu wonders whether one can calculate this sequence without using prime decomposition.

Examples

			a(238)=2, since a(2)=0, a(7)=2, a(14)=2, a(17)=1, a(34)=1, a(119)=2, and the largest among them is 2.
And a(239)=3, since 239 is a prime number, and a(238)=2.
		

Crossrefs

For values at primes, see A364332.

Programs

  • Mathematica
    Nest[Function[list,
      Module[{n = Length[list] + 1},
       Append[list,
        If[PrimeQ[n], Last[list] + 1,
         Max[(list[[First[#]]]) & /@ FactorInteger[n]]]]]], {0, 0}, 110]//Rest

Formula

a(2) = 0,
a(n) = a(n-1) + 1 if n is an odd prime,
a(n) = max{a(k) : k|n, 1