cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364338 G.f. satisfies A(x) = (1 + x) * (1 + x*A(x)^5).

This page as a plain text file.
%I A364338 #19 Mar 24 2025 22:33:44
%S A364338 1,2,11,105,1140,13555,170637,2235472,30161255,416248640,5848462880,
%T A364338 83378361111,1203100853951,17537182300140,257858115407535,
%U A364338 3819894878557990,56958234329850060,854192593184162160,12875579347191388830,194963091634569681550,2964229359714424159370,45234864131654311730160
%N A364338 G.f. satisfies A(x) = (1 + x) * (1 + x*A(x)^5).
%H A364338 Seiichi Manyama, <a href="/A364338/b364338.txt">Table of n, a(n) for n = 0..827</a>
%F A364338 a(n) = Sum_{k=0..n} binomial(5*k+1,k) * binomial(5*k+1,n-k) / (5*k+1).
%t A364338 terms = 22; A[_] = 0; Do[A[x_] = (1+x)(1+x*A[x]^5) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* _Stefano Spezia_, Mar 24 2025 *)
%o A364338 (PARI) a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(5*k+1, n-k)/(5*k+1));
%Y A364338 Cf. A073157, A364336, A364337, A364339.
%Y A364338 Cf. A215624, A234525, A239108, A364331, A364335.
%K A364338 nonn
%O A364338 0,2
%A A364338 _Seiichi Manyama_, Jul 19 2023