This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364345 #15 Oct 18 2023 04:43:41 %S A364345 1,1,2,2,4,5,7,10,13,16,21,27,34,43,54,67,83,102,122,151,182,218,258, %T A364345 313,366,443,513,611,713,844,975,1149,1325,1554,1780,2079,2381,2761, %U A364345 3145,3647,4134,4767,5408,6200,7014,8035,9048,10320,11639,13207,14836,16850 %N A364345 Number of integer partitions of n without any three parts (a,b,c) (repeats allowed) satisfying a + b = c. A variation of sum-free partitions. %e A364345 The a(1) = 1 through a(8) = 13 partitions: %e A364345 (1) (2) (3) (4) (5) (6) (7) (8) %e A364345 (11) (111) (22) (32) (33) (43) (44) %e A364345 (31) (41) (51) (52) (53) %e A364345 (1111) (311) (222) (61) (62) %e A364345 (11111) (411) (322) (71) %e A364345 (3111) (331) (332) %e A364345 (111111) (511) (611) %e A364345 (4111) (2222) %e A364345 (31111) (3311) %e A364345 (1111111) (5111) %e A364345 (41111) %e A364345 (311111) %e A364345 (11111111) %t A364345 Table[Length[Select[IntegerPartitions[n],Select[Tuples[Union[#],3],#[[1]]+#[[2]]==#[[3]]&]=={}&]],{n,0,30}] %Y A364345 For subsets of {1..n} instead of partitions we have A007865 (sum-free sets), differences A288728. %Y A364345 Without re-using parts we have A236912, complement A237113. %Y A364345 Allowing the sum of any number of parts gives A237667 (cf. A108917). %Y A364345 The complement is counted by A363225, strict A363226, for subsets A093971. %Y A364345 The strict case is A364346. %Y A364345 These partitions have ranks A364347, complement A364348. %Y A364345 A000041 counts partitions, strict A000009. %Y A364345 A008284 counts partitions by length, strict A008289. %Y A364345 A323092 counts double-free partitions, ranks A320340. %Y A364345 Cf. A002865, A025065, A026905, A111133, A240861, A275972, A320347, A325862, A326083, A363260. %K A364345 nonn %O A364345 0,3 %A A364345 _Gus Wiseman_, Jul 20 2023