This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364346 #13 Oct 18 2023 04:44:21 %S A364346 1,1,1,1,2,3,2,4,4,5,5,8,9,11,11,16,16,20,20,25,30,34,38,42,50,58,64, %T A364346 73,80,90,105,114,128,148,158,180,201,220,241,277,306,333,366,404,447, %U A364346 497,544,592,662,708,797,861,954,1020,1131,1226,1352,1456,1600 %N A364346 Number of strict integer partitions of n such that there is no ordered triple of parts (a,b,c) (repeats allowed) satisfying a + b = c. A variation of sum-free strict partitions. %e A364346 The a(1) = 1 through a(14) = 11 partitions (A..E = 10..14): %e A364346 1 2 3 4 5 6 7 8 9 A B C D E %e A364346 31 32 51 43 53 54 64 65 75 76 86 %e A364346 41 52 62 72 73 74 93 85 95 %e A364346 61 71 81 82 83 A2 94 A4 %e A364346 531 91 92 B1 A3 B3 %e A364346 A1 543 B2 C2 %e A364346 641 732 C1 D1 %e A364346 731 741 652 851 %e A364346 831 751 932 %e A364346 832 941 %e A364346 931 A31 %t A364346 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]=={}&]],{n,0,15}] %o A364346 (Python) %o A364346 from collections import Counter %o A364346 from itertools import combinations_with_replacement %o A364346 from sympy.utilities.iterables import partitions %o A364346 def A364346(n): return sum(1 for p in partitions(n) if max(p.values(),default=1)==1 and not any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # _Chai Wah Wu_, Sep 20 2023 %Y A364346 For subsets of {1..n} we have A007865 (sum-free sets), differences A288728. %Y A364346 For sums of any length > 1 we have A364349, non-strict A237667. %Y A364346 The complement is counted by A363226, non-strict A363225. %Y A364346 The non-strict version is A364345, ranks A364347, complement A364348. %Y A364346 A000041 counts partitions, strict A000009. %Y A364346 A008284 counts partitions by length, strict A008289. %Y A364346 A236912 counts sum-free partitions not re-using parts, complement A237113. %Y A364346 A323092 counts double-free partitions, ranks A320340. %Y A364346 Cf. A002865, A025065, A085489, A093971, A108917, A111133, A240861, A275972, A320347, A325862, A326083, A363260. %K A364346 nonn %O A364346 0,5 %A A364346 _Gus Wiseman_, Jul 22 2023