This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364347 #15 Oct 18 2023 04:44:40 %S A364347 1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,19,20,22,23,25,26,27,28,29,31, %T A364347 32,33,34,35,37,38,39,40,41,43,44,45,46,47,49,50,51,52,53,55,56,57,58, %U A364347 59,61,62,64,67,68,69,71,73,74,75,76,77,79,80,81,82,83,85 %N A364347 Numbers k > 0 such that if prime(a) and prime(b) both divide k, then prime(a+b) does not. %C A364347 Or numbers without any prime index equal to the sum of two others, allowing re-used parts. %C A364347 Also Heinz numbers of a type of sum-free partitions counted by A364345. %e A364347 We don't have 6 because prime(1), prime(1), and prime(1+1) are all divisors. %e A364347 The terms together with their prime indices begin: %e A364347 1: {} %e A364347 2: {1} %e A364347 3: {2} %e A364347 4: {1,1} %e A364347 5: {3} %e A364347 7: {4} %e A364347 8: {1,1,1} %e A364347 9: {2,2} %e A364347 10: {1,3} %e A364347 11: {5} %e A364347 13: {6} %e A364347 14: {1,4} %e A364347 15: {2,3} %e A364347 16: {1,1,1,1} %e A364347 17: {7} %e A364347 19: {8} %e A364347 20: {1,1,3} %t A364347 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A364347 Select[Range[100],Intersection[prix[#],Total/@Tuples[prix[#],2]]=={}&] %Y A364347 Subsets of this type are counted by A007865 (sum-free sets). %Y A364347 Partitions of this type are counted by A364345. %Y A364347 The squarefree case is counted by A364346. %Y A364347 The complement is A364348, counted by A363225. %Y A364347 The non-binary version is counted by A364350. %Y A364347 Without re-using parts we have A364461, counted by A236912. %Y A364347 Without re-using parts we have complement A364462, counted by A237113. %Y A364347 A001222 counts prime indices. %Y A364347 A108917 counts knapsack partitions, ranks A299702. %Y A364347 A112798 lists prime indices, sum A056239. %Y A364347 A323092 counts double-free partitions, ranks A320340. %Y A364347 Cf. A093971, A237667, A288728, A325862, A326083, A363226, A364531. %K A364347 nonn %O A364347 1,2 %A A364347 _Gus Wiseman_, Jul 26 2023