This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364348 #8 Oct 18 2023 04:44:56 %S A364348 6,12,18,21,24,30,36,42,48,54,60,63,65,66,70,72,78,84,90,96,102,105, %T A364348 108,114,120,126,130,132,133,138,140,144,147,150,154,156,162,165,168, %U A364348 174,180,186,189,192,195,198,204,210,216,222,228,231,234,240,246,252 %N A364348 Numbers with two possibly equal divisors prime(a) and prime(b) such that prime(a+b) is also a divisor. %C A364348 Or numbers with a prime index equal to the sum of two others, allowing re-used parts. %C A364348 Also Heinz numbers of a type of sum-free partitions counted by A363225. %e A364348 We have 6 because prime(1) and prime(1) are both divisors of 6, and prime(1+1) is also. %e A364348 The terms together with their prime indices begin: %e A364348 6: {1,2} %e A364348 12: {1,1,2} %e A364348 18: {1,2,2} %e A364348 21: {2,4} %e A364348 24: {1,1,1,2} %e A364348 30: {1,2,3} %e A364348 36: {1,1,2,2} %e A364348 42: {1,2,4} %e A364348 48: {1,1,1,1,2} %e A364348 54: {1,2,2,2} %e A364348 60: {1,1,2,3} %e A364348 63: {2,2,4} %e A364348 65: {3,6} %e A364348 66: {1,2,5} %e A364348 70: {1,3,4} %e A364348 72: {1,1,1,2,2} %t A364348 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A364348 Select[Range[100],Intersection[prix[#],Total/@Tuples[prix[#],2]]!={}&] %Y A364348 Subsets of this type are counted by A093971, complement A007865. %Y A364348 Partitions of this type are counted by A363225, strict A363226. %Y A364348 The complement is A364347, counted by A364345. %Y A364348 The complement without re-using parts is A364461, counted by A236912. %Y A364348 Without re-using parts we have A364462, counted by A237113. %Y A364348 A001222 counts prime indices. %Y A364348 A108917 counts knapsack partitions, ranks A299702. %Y A364348 A112798 lists prime indices, sum A056239. %Y A364348 A323092 counts double-free partitions, ranks A320340. %Y A364348 Cf. A237667, A275972, A288728, A325862, A326083, A364346. %K A364348 nonn %O A364348 1,1 %A A364348 _Gus Wiseman_, Jul 27 2023