A364349 Number of strict integer partitions of n containing the sum of no subset of the parts.
1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 11, 15, 14, 21, 21, 28, 29, 38, 38, 51, 50, 65, 68, 82, 83, 108, 106, 130, 136, 163, 168, 206, 210, 248, 266, 307, 322, 381, 391, 457, 490, 553, 582, 675, 703, 797, 854, 952, 1000, 1147, 1187, 1331, 1437, 1564, 1656, 1869
Offset: 0
Keywords
Examples
The partition y = (7,5,3,1) has no subset with sum in y, so is counted under a(16). The partition y = (15,8,4,2,1) has subset {1,2,4,8} with sum in y, so is not counted under a(31). The a(1) = 1 through a(9) = 8 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (9) (2,1) (3,1) (3,2) (4,2) (4,3) (5,3) (5,4) (4,1) (5,1) (5,2) (6,2) (6,3) (6,1) (7,1) (7,2) (4,2,1) (5,2,1) (8,1) (4,3,2) (5,3,1) (6,2,1)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Function[ptn,UnsameQ@@ptn&&Select[Subsets[ptn,{2,Length[ptn]}],MemberQ[ptn,Total[#]]&]=={}]]],{n,0,30}]
Comments