A364359 Primes that are the concatenation of a square and a prime that is the concatenation of two squares.
419, 911, 919, 941, 1181, 1499, 1619, 1811, 4919, 8111, 9181, 9491, 9811, 11699, 12119, 12251, 14411, 14419, 16481, 16811, 19001, 22511, 22541, 32411, 32441, 36251, 44111, 44119, 44729, 49499, 49811, 52919, 57641, 64499, 64811, 67619, 72911, 81181, 90011, 90019, 91009, 92251, 94441, 97841, 98419
Offset: 1
Examples
a(5) = 1181 is a term because it is the concatenation of 1^2 = 1, 1^2 =1 and 9^2 = 81, and 181 and 1181 are primes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A167535.
Programs
-
Maple
for d from 1 to 3 do m1:= ceil(10^((d-1)/2)); m2:= floor(sqrt(10^d - 1)); S[d]:= {seq(i^2, i=m1..m2)}; if m1::even then m1:= m1+1 fi; So[d]:= {seq(i^2, i=m1..m2,2)}; od: for d from 2 to 4 do P2[d]:= select(isprime, {seq(seq(seq(10^i*s+t, t=So[i]),s=S[d-i]),i=1..d-1)}) od: for d from 3 to 5 do P3[d]:= select(isprime, {seq(seq(seq(10^i*s+t, t=P2[i]),s=S[d-i]),i=2..d-1)}) od: sort([seq](op(P3[d]),d=3..5));
Comments