A364368 An irregular triangle read by rows, the 5th row-symmetric Fibonaccian triangle: T(n,k) is the Whitney number of level k of the (5,n)-th symmetric Fibonaccian lattice (0 <= n, 0 <= k <= 4*n).
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 3, 2, 1, 1, 3, 6, 10, 13, 16, 17, 16, 13, 10, 6, 3, 1, 1, 4, 10, 20, 32, 46, 59, 68, 71, 68, 59, 46, 32, 20, 10, 4, 1, 1, 5, 15, 35, 66, 109, 161, 215, 263, 296, 308, 296, 263, 215, 161, 109, 66, 35, 15, 5, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) starts as follows: 1; 1, 1, 1, 1, 1; 1, 2, 3, 4, 4, 4, 3, 2, 1; 1, 3, 6, 10, 13, 16, 17, 16, 13, 10, 6, 3, 1; 1, 4, 10, 20, 32, 46, 59, 68, 71, 68, 59, 46, 32, 20, 10, 4, 1; ... Below are the 24 (5,2) Fibonaccian strings (organized by rank level) that comprise the (5,2)nd symmetric Fibonaccian lattice: rank=8: (1,6) rank=7: (1,7) (2,6) rank=6: (1,8) (2,7) (3,6) rank=5: (1,9) (2,8) (3,7) (4,6) rank=4: (1,10) (2,9) (3,8) (4,7) rank=3: (2,10) (3,9) (4,8) (5,7) rank=2: (3,10) (4,9) (5,8) rank=1: (4,10) (5,9) rank=0: (5,10) The pair (5,6) is disallowed as a (5,2) Fibonaccian string since it contains consecutive integers. In the (5,3)rd symmetric Fibonaccian lattice, rank level 9 consists of exactly the (5,3) Fibonaccian strings whose coordinate sum is 5*(3*(3+1)/2)-9=21: (1,6,14), (1,7,13), (1,8,12), (1,9,11), (2,6,13), (2,7,12), (2,8,11), (3,6,12), (3,7,11), and (4,6,11), confirming that T(3,9)=10.
Links
- R. G. Donnelly, M. W. Dunkum, M. L. Huber, and L. Knupp, Sign-alternating Gibonacci polynomials, arXiv:2012.14993 [math.CO], 2020.
- R. G. Donnelly, M. W. Dunkum, M. L. Huber, and L. Knupp, "Sign-alternating Gibonacci polynomials", Enumer. Comb. Appl. 1:2 (2021), art. id. S2R15.
- R. G. Donnelly and M. W. Dunkum, Gelfand--Tsetlin-type weight bases for all special linear Lie algebra representations corresponding to skew Schur functions, arXiv:2012.14986 [math.CO], 2020-2022.
- R. G. Donnelly and M. W. Dunkum, "Gelfand--Tsetlin-type weight bases for all special linear Lie algebra representations corresponding to skew Schur functions", Adv. Appl. Math. 139 (2022), art. id. 102356.
- R. G. Donnelly, M. W. Dunkum, S. V. Lišková, and A. Nance, Symmetric Fibonaccian distributive lattices and representations of the special linear Lie algebras, arXiv:2012.14991 [math.CO], 2020-2022.
- R. G. Donnelly, M. W. Dunkum, S. V. Lišková, and A. Nance, "Symmetric Fibonaccian distributive lattices and representations of the special linear Lie algebras", Involve 16:2 (2023), 201-226.
Formula
With T(0,0)=1, then T(n,k) = T(n-1,k-4) + T(n-1,k-3) + T(n-1,k-2) + T(n-1,k-1) + T(n-1,k) - T(n-2,k-4) for n >= 1 and 0 <= k <= 4*n, understanding T(i,j) to be zero when j < 0 or j > 4*i. That the preceding recurrence holds is equivalent to the identity p(n,x) = (1+x+x^2+x^3+x^4)*p(n-1,x) - x^4*p(n-2,x) for n >= 1, where p(0,x)=1 and p(-1,x) is taken to be 0.
Comments