cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364378 Numbers whose representation in Jacobsthal greedy base (A265747) is palindromic.

This page as a plain text file.
%I A364378 #8 Jul 29 2023 03:21:55
%S A364378 0,1,2,4,6,9,12,20,22,27,36,41,44,60,68,84,86,97,112,123,132,143,158,
%T A364378 169,172,204,220,252,260,292,308,340,342,363,396,417,432,453,486,507,
%U A364378 516,537,570,591,606,627,660,681,684,748,780,844,860,924,956,1020,1028
%N A364378 Numbers whose representation in Jacobsthal greedy base (A265747) is palindromic.
%C A364378 A128209(n) = A001045(n) + 1 is a term for n >= 3, since its representation is two 1's with n-3 0's between them.
%C A364378 A084639(n) is a term for n >= 1 since its representation is n 1's.
%C A364378 A014825(n) is a term for n >= 1 since its representation is n-1 0's interleaved with n 1's.
%H A364378 Amiram Eldar, <a href="/A364378/b364378.txt">Table of n, a(n) for n = 1..10000</a>
%e A364378 The first 10 terms are:
%e A364378    n  a(n)  A265747(a(n))
%e A364378   --  ----  -------------
%e A364378    1     0              0
%e A364378    2     1              1
%e A364378    3     2              2
%e A364378    4     4             11
%e A364378    5     6            101
%e A364378    6     9            111
%e A364378    7    12           1001
%e A364378    8    20           1111
%e A364378    9    22          10001
%e A364378   10    27          10101
%t A364378 palJacobQ[n_] := PalindromeQ[A265747[n]]; Select[Range[0, 1000], palJacobQ] (* using A265747[n] *)
%o A364378 (PARI) is(n) = {my(dig = digits(A265747(n))); dig == Vecrev(dig);} \\ using A265747(n)
%Y A364378 Cf. A001045, A014825, A084639, A128209, A265747.
%Y A364378 Similar sequences: A002113, A006995, A014190, A094202, A331191, A351712, A351717, A352087, A352105, A352319, A352341, A364214.
%K A364378 nonn,base
%O A364378 1,3
%A A364378 _Amiram Eldar_, Jul 21 2023