cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364385 a(n) is the number of quadratic equations u*x^2 + v*x + w = 0 with different solution sets L != {}, where n >= abs(u) + abs(v) + abs(w) and the coefficients u, v, w as well as the solutions x_1, x_2 are integers.

Original entry on oeis.org

1, 4, 6, 12, 15, 21, 23, 31, 35, 42, 46, 54, 56, 66, 70, 78, 83, 93, 95, 105, 109, 119, 123, 133, 137, 148, 154, 162, 166, 178, 180, 194, 198, 206, 212, 224, 229, 241, 245, 255, 259, 273, 275, 289, 295, 303, 309, 321, 325, 340, 346, 356, 360, 372, 376, 390, 396
Offset: 1

Views

Author

Felix Huber, Jul 22 2023

Keywords

Examples

			For n = 3 the a(3) = 6 solutions (u, v, w, x_1, x_2) with positive u are (1, 0, 0, 0, 0), (1, -1, 0, 1, 0), (1, 0, -1, 1, -1), (1, 1, 0, 0, -1), (1, -2, 0, 2, 0), (1, 2, 0, 0, -2).
Equations multiplied by -1 do not have a different solution set, for example (-1, 1, 0, 1, 0) has the same solution set as (1, -1, 0, 1, 0).
		

Crossrefs

Partial sums of A364384.

Programs

  • Maple
    A364384 := proc(n) local i, u, v, w, x_1, x_2, a; a := 0; i := n; for v from 1 - i to i - 1 do for w from abs(v) - i + 1 to i - abs(v) - 1 do u := i - abs(v) - abs(w); if igcd(u, v, w) = 1 then x_1 := 1/2*(-v + sqrt(v^2 - 4*w*u))/u; x_2 := 1/2*(-v - sqrt(v^2 - 4*w*u))/u; if floor(Re(x_1)) = x_1 and floor(Re(x_2)) = x_2 then a := a + 1; end if; end if; end do; end do; end proc;
    A364385 := proc(n) local s; option remember; if n = 1 then A364384(1); else procname(n - 1) + A364384(n); end if; end proc; seq(A364385(n), n = 1 .. 57);
  • Python
    from math import gcd
    from sympy import integer_nthroot
    def A364385(n):
        c = 0
        for v in range(0,n):
            for w in range(0,n-v):
                for u in range(1,n-v-w+1):
                    if gcd(u,v,w)==1:
                        v2, w2, u2 = v*v, w*(u<<2), u<<1
                        if v2+w2>=0:
                            d, r = integer_nthroot(v2+w2,2)
                            if r and not ((d+v)%u2 or (d-v)%u2):
                                c += 1
                                if v>0 and w>0:
                                    c += 1
                        if v>0 and v2-w2>=0:
                            d, r = integer_nthroot(v2-w2,2)
                            if r and not((d+v)%u2 or (d-v)%u2):
                                c += 1
                                if w>0:
                                    c += 1
        return c # Chai Wah Wu, Oct 04 2023

Formula

a(n) = Sum_{k=1..n} A364384(k).