This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364388 #6 Jul 23 2023 13:42:31 %S A364388 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %T A364388 1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1, %U A364388 1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1 %N A364388 Number of divisors of n of the form 5*k+1 that are at most sqrt(n). %F A364388 G.f.: Sum_{k>=0} x^(5*k+1)^2 / (1 - x^(5*k+1)). %t A364388 Table[Count[Divisors[n], _?(# <= Sqrt[n] && MemberQ[{1}, Mod[#, 5]] &)], {n, 100}] %t A364388 nmax = 100; CoefficientList[Series[Sum[x^(5 k + 1)^2/(1 - x^(5 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x] // Rest %Y A364388 Cf. A001876, A038548, A364389. %K A364388 nonn %O A364388 1,36 %A A364388 _Ilya Gutkovskiy_, Jul 21 2023