This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364390 #12 Dec 04 2023 06:32:10 %S A364390 1,3,2,8,7,4,10,9,6,5,19,18,15,14,11,21,20,17,16,13,12,34,33,30,29,26, %T A364390 25,22,36,35,32,31,28,27,24,23,53,52,49,48,45,44,41,40,37,55,54,51,50, %U A364390 47,46,43,42,39,38,76,75,72,71,68,67,64,63,60,59,56,78,77,74,73,70,69,66,65,62,61,58,57 %N A364390 Triangle T(n, k) based on A176040 which read by rows yields a permutation of the positive integers. %F A364390 T(n, k) = n*(n+1)/2 + (n-1)*(n mod 2) - 2*k + 3 - (k mod 2) for 1 <= k <= n. %F A364390 T(n, 1) = n*(n+1)/2 + (n-1)*(n mod 2) for n > 0. %F A364390 T(2*n, 1) = A000217(2*n) for n > 0. %F A364390 T(n, k) - T(n, k+1) = A176040(k) for k > 0. %F A364390 T(n, k) = T(n-1, k) + T(n, k-1) - T(n-1, k-1) for 1 < k < n. %F A364390 T(2*n, k) - T(2*n-1, k) = 2 for 1 <= k < 2*n. %F A364390 Row sums: A006003(n) - (-1)^n * 2 * floor((n-1)/2) * (1 + floor((n-1)/2)) for n > 0. - _Werner Schulte_, Dec 03 2023 %e A364390 Triangle T(n, k) for 1 <= k <= n begins: %e A364390 n\k: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A364390 ========================================================================== %e A364390 01 : 1 %e A364390 02 : 3 2 %e A364390 03 : 8 7 4 %e A364390 04 : 10 9 6 5 %e A364390 05 : 19 18 15 14 11 %e A364390 06 : 21 20 17 16 13 12 %e A364390 07 : 34 33 30 29 26 25 22 %e A364390 08 : 36 35 32 31 28 27 24 23 %e A364390 09 : 53 52 49 48 45 44 41 40 37 %e A364390 10 : 55 54 51 50 47 46 43 42 39 38 %e A364390 11 : 76 75 72 71 68 67 64 63 60 59 56 %e A364390 12 : 78 77 74 73 70 69 66 65 62 61 58 57 %e A364390 13 : 103 102 99 98 95 94 91 90 87 86 83 82 79 %e A364390 14 : 105 104 101 100 97 96 93 92 89 88 85 84 81 80 %e A364390 etc. %o A364390 (PARI) T(n,k) = n*(n+1)/2 + (n-1)*(n%2) - 2*k + 3 - (k%2) %Y A364390 Cf. A000217, A006003, A176040. %K A364390 nonn,easy,tabl %O A364390 1,2 %A A364390 _Werner Schulte_, Jul 21 2023