cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364410 G.f. A(x) satisfies A(x) = 1 + x^2 * (A(x) / (1 - x))^4.

This page as a plain text file.
%I A364410 #24 Oct 15 2023 09:25:56
%S A364410 1,0,1,4,14,52,201,800,3260,13536,57068,243664,1051512,4579088,
%T A364410 20097526,88810872,394811696,1764477304,7923087616,35728412152,
%U A364410 161731039076,734646128920,3347600839252,15298276784648,70097391229500,321974115549256,1482242974320685
%N A364410 G.f. A(x) satisfies A(x) = 1 + x^2 * (A(x) / (1 - x))^4.
%F A364410 a(n) = Sum_{k=0..floor(n/2)} binomial(n+2*k-1,n-2*k) * binomial(4*k,k) / (3*k+1).
%o A364410 (PARI) a(n) = sum(k=0, n\2, binomial(n+2*k-1, n-2*k)*binomial(4*k, k)/(3*k+1));
%Y A364410 Partial sums give A186996.
%Y A364410 Cf. A213336, A366645, A366646.
%K A364410 nonn
%O A364410 0,4
%A A364410 _Seiichi Manyama_, Oct 15 2023