This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364430 #12 Jul 25 2023 07:27:25 %S A364430 1,1,7,61,603,6443,72517,846995,10170685,124780525,1557347467, %T A364430 19710577873,252386341335,3263626001751,42558647522697, %U A364430 559032393114023,7390085367865081,98242108076244665,1312529311579827631,17613845480108029957,237322279651518516019 %N A364430 G.f. satisfies A(x) = 1 - x*A(x)*(1 - 2*A(x)^3). %F A364430 a(n) = (-1)^n * Sum_{k=0..n} (-2)^k * binomial(n,k) * binomial(n+3*k+1,n) / (n+3*k+1). %F A364430 D-finite with recurrence 3*n*(3*n-1)*(3*n+1)*a(n) +(-566*n^3 +1335*n^2 -1105*n +312)*a(n-1) +3*(943*n^3 -5739*n^2 +11016*n -6748)*a(n-2) +18*(-250*n^3 +2499*n^2 -8233*n +8938)*a(n-3) +27*(n-4)*(31*n^2 -314*n +735)*a(n-4) +81*(10*n -51)*(n-4) *(n-5)*a(n-5) +243*(n-5) *(n-6)*(n-4)*a(n-6)=0. - _R. J. Mathar_, Jul 25 2023 %p A364430 A364430 := proc(n) %p A364430 (-1)^n*add((-2)^k* binomial(n,k) * binomial(n+3*k+1,n) / (n+3*k+1),k=0..n) ; %p A364430 end proc: %p A364430 seq(A364430(n),n=0..70); # _R. J. Mathar_, Jul 25 2023 %o A364430 (PARI) a(n) = (-1)^n*sum(k=0, n, (-2)^k*binomial(n, k)*binomial(n+3*k+1, n)/(n+3*k+1)); %Y A364430 Cf. A001003, A153232. %Y A364430 Cf. A364431, A364432, A364437. %K A364430 nonn %O A364430 0,3 %A A364430 _Seiichi Manyama_, Jul 24 2023