cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364440 Triangle T(n,k) (n >= 1 and 1 <= k <= n) read by rows, arising from the Mosaic Problem.

This page as a plain text file.
%I A364440 #50 Sep 06 2023 20:30:00
%S A364440 0,0,1,0,73,31998,0,3960,10414981,20334816290,0,190475
%N A364440 Triangle T(n,k) (n >= 1 and 1 <= k <= n) read by rows, arising from the Mosaic Problem.
%C A364440 Fill an n X k array of cells with tiles taken from a set of six (each one connecting two sides of the cell). T(n,k) is the number of tilings containing at least one loop.
%C A364440 There are 6 tiles, all of size 1 X 1, one for each way of joining two sides of the cell.
%H A364440 Jack Hanke, <a href="https://www.youtube.com/watch?v=D3dp5RBmPcs">The Mosaic Problem - How and Why to do Math for Fun</a>, Youtube video.
%F A364440 T(n,1) = 0 for all n.
%F A364440 T(n,2) = 36^n - ((36*beta - 35)*beta^(1 - n) - (36*alpha - 35)*alpha^(1 - n))/(beta - alpha), where alpha = (1 + sqrt(33/37))/2 and beta = (1 - sqrt(33/37))/2.
%e A364440 Triangle begins:
%e A364440         k=1    k=2       k=3          k=4
%e A364440   n=1:   0;
%e A364440   n=2:   0,      1;
%e A364440   n=3:   0,     73,    31998;
%e A364440   n=4:   0,   3960, 10414981, 20334816290;
%e A364440   n=5:   0, 190475, ...
%e A364440   ...
%e A364440 For T(3, 2), there are 73 solutions (squares marked with an asterisk can take any of the six different tiles):
%e A364440 .
%e A364440 1. (36 tilings)   2. (36 tilings)   3. (1 tiling)
%e A364440   +---+---+---+     +---+---+---+     +---+---+---+
%e A364440   |   |   |   |     |   |   |   |     |   |   |   |
%e A364440   |   |   | * |     | * |   |   |     |   |---|   |
%e A364440   |  /|\  |   |     |   |  /|\  |     |  /|   |\  |
%e A364440   +---+---+---+     +---+---+---+     +---+---+---+
%e A364440   |  \|/  |   |     |   |  \|/  |     |  \|   |/  |
%e A364440   |   |   | * |     | * |   |   |     |   |---|   |
%e A364440   |   |   |   |     |   |   |   |     |   |   |   |
%e A364440   +---+---+---+     +---+---+---+     +---+---+---+
%K A364440 nonn,tabl,hard,more
%O A364440 1,5
%A A364440 _Douglas Boffey_, Aug 02 2023