A364458 Prime numbers that are not repdigits with digits in nondecreasing order with the property that any nontrivial permutation of the digits gives a composite number.
19, 23, 29, 47, 59, 67, 89, 223, 227, 229, 233, 257, 269, 449, 499, 557, 599, 677, 1447, 2267, 2447, 4447, 5557, 8999, 11119, 15559, 22229, 22669, 23333, 24889, 44449, 48889, 55589, 55889, 59999, 79999, 222269, 444449, 455557, 555557, 555589, 666667, 4444469, 4555559
Offset: 1
Examples
19 is a term, because the digits of 19 are in nondecreasing order and 91 is the unique number != 19 given by a permutation of 19 and 91 = 7 * 13 is composite and the digits of 91 are not in nondecreasing order.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..108 (all terms with <= 52 digits)
- David A. Corneth, PARI program
Programs
-
PARI
is(k)=my(u=digits(k),n=#u);if(#vecsort(u,,8)==1||u!=vecsort(u)||!isprime(k),return(0));forperm(n,p,my(vp=Vec(p),v=[]);for(i=1,n,v=concat(v,u[vp[i]]));q=fromdigits(v);if(k!=q&&isprime(q),return(0)));1
-
PARI
\\ See PARI link
-
Python
from sympy import isprime from sympy.utilities.iterables import multiset_permutations as mp from itertools import count, islice, combinations_with_replacement as mc def bgen(d): yield from ("".join(m) for m in mc("123456789", d)) def agen(): yield from (t for d in count(1) for k in bgen(d) if len(set(k))!=1 and isprime(t:=int(k)) if not any((j:="".join(m))!=k and isprime(int(j)) for m in mp(k))) print(list(islice(agen(), 44))) # Michael S. Branicky, Dec 23 2023
Comments