A364462 Positive integers having a divisor of the form prime(a)*prime(b) such that prime(a+b) is also a divisor.
12, 24, 30, 36, 48, 60, 63, 70, 72, 84, 90, 96, 108, 120, 126, 132, 140, 144, 150, 154, 156, 165, 168, 180, 189, 192, 204, 210, 216, 228, 240, 252, 264, 270, 273, 276, 280, 286, 288, 300, 308, 312, 315, 324, 325, 330, 336, 348, 350, 360, 372, 378, 384, 390
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 12: {1,1,2} 24: {1,1,1,2} 30: {1,2,3} 36: {1,1,2,2} 48: {1,1,1,1,2} 60: {1,1,2,3} 63: {2,2,4} 70: {1,3,4} 72: {1,1,1,2,2} 84: {1,1,2,4} 90: {1,2,2,3} 96: {1,1,1,1,1,2} 108: {1,1,2,2,2} 120: {1,1,1,2,3} 126: {1,2,2,4} 132: {1,1,2,5} 140: {1,1,3,4} 144: {1,1,1,1,2,2}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) local F, i,j,m; F:= map(t -> `if`(t[2]>=2, numtheory:-pi(t[1])$2, numtheory:-pi(t[1])), ifactors(n)[2]); for i from 1 to nops(F)-1 do for j from 1 to i-1 do if member(F[i]+F[j],F) then return true fi od od; false end proc: select(filter, [$1..1000]); # Robert Israel, Aug 30 2023
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Intersection[prix[#], Total/@Subsets[prix[#],{2}]]!={}&]
Comments