A364464 Number of strict integer partitions of n where no part is the difference of two consecutive parts.
1, 1, 1, 1, 2, 3, 2, 4, 4, 6, 5, 8, 9, 12, 13, 16, 16, 21, 23, 29, 34, 38, 41, 49, 57, 64, 73, 86, 95, 110, 120, 135, 160, 171, 197, 219, 247, 277, 312, 342, 386, 431, 476, 527, 598, 640, 727, 796, 893, 966, 1097, 1178, 1327, 1435, 1602, 1740, 1945, 2084, 2337
Offset: 0
Keywords
Examples
The strict partition y = (9,5,3,1) has differences (4,2,2), and these are disjoint from the parts, so y is counted under a(18). The a(1) = 1 through a(9) = 6 strict partitions: (1) (2) (3) (4) (5) (6) (7) (8) (9) (3,1) (3,2) (5,1) (4,3) (5,3) (5,4) (4,1) (5,2) (6,2) (7,2) (6,1) (7,1) (8,1) (4,3,2) (5,3,1)
Crossrefs
The non-strict version is A363260.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,-Differences[#]]=={}&]],{n,0,15}]
-
Python
from collections import Counter from sympy.utilities.iterables import partitions def A364464(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), filter(lambda p:max(p[1].values(),default=1)==1,partitions(n,size=True))) if set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023
Comments