cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364465 Number of subsets of {1..n} with all different first differences of elements.

This page as a plain text file.
%I A364465 #12 Oct 18 2023 04:52:04
%S A364465 1,2,4,7,13,22,36,61,99,156,240,381,587,894,1334,1967,2951,4370,6406,
%T A364465 9293,13357,18976,27346,39013,55437,78154,109632,152415,210801,293502,
%U A364465 406664,561693,772463,1058108,1441796,1956293,2639215,3579542,4835842,6523207
%N A364465 Number of subsets of {1..n} with all different first differences of elements.
%H A364465 Rémy Sigrist, <a href="/A364465/a364465.txt">C++ program</a>
%e A364465 The a(0) = 1 through a(4) = 13 subsets:
%e A364465   {}  {}   {}     {}     {}
%e A364465       {1}  {1}    {1}    {1}
%e A364465            {2}    {2}    {2}
%e A364465            {1,2}  {3}    {3}
%e A364465                   {1,2}  {4}
%e A364465                   {1,3}  {1,2}
%e A364465                   {2,3}  {1,3}
%e A364465                          {1,4}
%e A364465                          {2,3}
%e A364465                          {2,4}
%e A364465                          {3,4}
%e A364465                          {1,2,4}
%e A364465                          {1,3,4}
%t A364465 Table[Length[Select[Subsets[Range[n]],UnsameQ@@Differences[#]&]],{n,0,10}]
%Y A364465 For all differences of pairs of elements we have A196723
%Y A364465 For partitions instead of subsets we have A325325, strict A320347.
%Y A364465 For subset-sums we have A325864, for partitions A108917, A275972.
%Y A364465 A007318 counts subsets by length.
%Y A364465 A053632 counts subsets by sum.
%Y A364465 A363260 counts partitions disjoint from differences, complement A364467.
%Y A364465 A364463 counts subsets disjoint from differences, complement A364466.
%Y A364465 Cf. A000009, A008289, A011782, A236912, A320348, A325857, A325877, A325878, A326083, A364345, A364346.
%K A364465 nonn
%O A364465 0,2
%A A364465 _Gus Wiseman_, Jul 30 2023
%E A364465 More terms from _Rémy Sigrist_, Aug 06 2023